Testing System for Pressure Sensitive Cardiovascular Catheter

Friday, October 27th

Design Team

Team Members

- Danielle Ebben Team Leader
- Erik Yusko BWIG
- Anita Zarebi BSAC
- Tony Wampole Communications

Client

- Colette Wagner
- Dr. Nancy Sweitzer
 - Dept. of Cardiology, UW Medical School

Advisor

• Professor William Murphy

Overview

- Problem Statement
- Background material
- Product Design Specifications/Client Requirements
- Three design alternatives, explanation and analysis
- Future work

Problem Statement

- Pressure sensitive cardiovascular catheters are being used to verify a new blood pressure monitoring technology
- The three pressure sensors on the catheter are not recording the same pressure.
- Need a system to verify accuracy of sensors or diagnose a problem

Previous Work

- Pressure calibration procedure
- Tubular device
 - Sphygmomanometer induced pressure

Problems:

- Maintaining constant pressure
- Leaking saline

Client Requirements

- Testing system for catheter calibration
- Test at range of pressures
 - Atmospheric
 - Saline
 - Increments of 50 mmHg
- Controllable saline range

- Stable/constant calibration values
 - 2% allowable error
 - 200 mmHg max
- Short amount of time
- Sterility
- Inexpensive

Alternative #1: Rotating Cylinder Design

Alternative #1: Rotating Cylinder Plunging Mechanism

Alternative #1: Rotating Cylinder Design

Pros

- User control over process
- Catheter sensor close to ours
- Fairly small size
- Neat/Clean Design
- Removable Saline

Cons

- Cost
- Time to Program
- Fabrication
- Saline contact
 - membrane instead of foam?

- Air tight container
- Balloon fills, increases pressure inside tank
- Pressure sensor regulates air pump

Alternative #2: Balloon Design

• Pros

- Simplicity
- Saline easily removed for storage
- Many components already fabricated
- Simple geometry for machining
- May or May not be automated depending on client preference

- Cons
 - Gas/Liquid interface
 - Requires air/water tight seal
 - Automation may require additional computer program
 - Cost of automation

Alternative #3: Plunger Design

1. Filling port 2. Saline filled catheter chamber 3. Membrane 4. Air filled chamber 5. Piston Head Attached to LA 3 4 5 2

Alternative #3: Plunger Design

Alternative #3: Plunger Design

Pros

Cons

- Simple
- Repeatable
- Easily automated
- Allows for user control

- Requires air/water tight seal
- Moving components
- Difficult machining

Future Work

- Decide on specific design
 - Specifics within design (e.g. automation)
- Build prototype system
- Design calibration method
- Test system and calibration method

Questions?