Product Design Specification Hospital Bed Last updated: October 30, 2006

Team members

Ibrahim Khansa	Leader
Katy Reed	Communicator
Brenton Nelson	BSAC
Shikha	BWIG

Problem Statement

Existing bed back angle control systems do not allow the operator to control the velocity of motion. A more intuitive control system, which gives the user better control over the velocity, is desired. The user would be able to grasp a handle which operates according to a force-assist concept, and the velocity would vary with the amount of force applied. The bed back still needs to support the weight of a heavy patient, and be stable if power is lost.

Client Requirements

- Solution (1997) Selection (1997) Selecti
- Second Se
- Intuitive and ergonomically designed controller
- Support a maximum load of 180 lbs on the bed-back
- Bed-back brake system during power loss
- Maximum operator force should not exceed 20 lbs on the controller
- Budget less than \$2,000

Design Requirements

1. Physical and Operational Characteristics

a. *Performance requirements:* The controller needs to be mechanically and electrically compatible with an existing bed. The device may be used several times a day. Repeatable and consistent behavior is expected. The bed back should be able to support a load of up to 180lb. User interface must be durable and easy to use.

- b. *Safety:* The device will be in close contact with the patient. Therefore, it must be completely insulated and should not present an electrocution hazard. Also, one patient's grandson is a hemophiliac. Therefore, the device must be free of sharp edges.
- c. *Accuracy and reliability:* The angle and speed need not be fully accurate, and an error of 10% is tolerable. However, the user must have full control over the angle and speed, and should be able to adjust those as needed.
- d. *Life in service:* The device should sustain reasonable usage, which may be several times a day, with about a minute of usage at a time. The device should be in service for several years.
- e. *Operating environment:* The device will be operated primarily in an indoor setting at a fairly constant room temperature. Fluid may be spilled on the device (patient's medication, for instance). The device should be resistant to reasonable conditions, such as moderate humidity and temperature fluctuations.
- f. *Ergonomics:* The controller must be accessible to patients with carpal tunnel syndrome, partial paralysis, Parkinson's disease and blindness. The device should be fully operable with a small amount of force.
- g. *Size:* The controller should not be too bulky as to hinder the normal functioning of the bed.
- h. *Weight*: If free to move, the controller should be easy to carry for patients with impaired muscle and bone function.
- i. *Aesthetics:* The device should fit into the aesthetics of the existing bed, as some patients do not wish to be seen as sick.

2. Production characteristics

- *a. Quantity*: For prototyping and RERC competition purposes, only one device will be produced.
- *b. Target product cost*: The production cost should not exceed \$2000.

3. Miscellaneous

- *a. Standards and specifications*: The bed and device must satisfy the requirements and recommendations of the Hospital Bed Safety Workgroup (HBSW)
- *b. Patient-related concerns*: The design must be done with the patient in mind at all times. The patient must be comfortable enough with the bed to be able to sleep in it.
- *c. Competition*: The main competition arises from other participants in the RERC National Design Competition. Our device needs to exceed the others in functionality and originality. A preliminary patent search did not yield any significantly similar products on the market.