

Abstract

Biopsy needles are limited by a lack of optical information. Previous solutions involving optical coherence tomography in a needle incorporated moving parts to obtain the lateral resolution. The chosen solution relies on a transmission grating (eliminating moving components such as gears) to direct beams of light to generate a field of view. Future work will involve further maximizing lateral resolution and reduce the incidence of false negatives in biopsy procedures.

Background

Current biopsy procedures:

- Low sensitivities
- No optical information about the tissue sample <u>OCT :</u>
- Offers a way to obtain two dimensional fine resolution [20 µm]
- Interferometry components provide depth
- Current lateral resolution obtained by moving parts

 Detect cancerous tissue in otherwise homogeneous tissue

Histology

Figure 1: OCT scans of breast tumor tissue compared with stained histology; Zysk, 2006

Problem Statement

Improve biopsy procedures by providing optical information.

- Eliminate moving parts in needle:
- Develop method for obtaining optimal 2D lateral resolution and field of view
- Reduce incidence of false negatives
- Encapsulate all components in a needle

Figure 2: Schematic of imaging set-up

Current Product

Current designs are complex

 Involve moving components (e.g. gear and actuator) which provide 360° field of view

Figure 3: Moving Prism Design; Fujimoto, 2000

Augmenting Biopsy Sensitivity through Needle OCT Imaging

Peter Kleinschmidt, Vidhya Raju, Susan Samreth, Karissa Thoma, Tuan Tran **Client: Dr. Scott Sanders, Department of Mechanical Engineering** Advisor: Dr. Walter Block, Department of Biomedical Engineering

Figure 5: $1 \rightarrow$ collimating lens (f=4.5 mm) $2 \rightarrow$ transmission grating $3 \rightarrow$ collimating lens (f=4.5 mm) 4→ First Order Image of USAF Target from 650 nm laser 5 \rightarrow First Order Image of USAF Target from white laser

<u>Components</u>

A step-wise guide to obtaining the lateral resolution of an image.

0 0

0 0

c c c

C

e e

0 0 0 0

Step 1	 Swept Wavelength Laser Source: 700-1400 nm Range limited by absorption characteristics of water
Step 2	 Aspheric Lens: focal length 4.5 mm Focuses (collimates) light
Step 3	• Transmission grating: 15000 lines/inch • Splits incoming light into orders based on interference patterns • Calculate resolution $R = mN$ $R = \frac{\lambda}{(\lambda_2 - \lambda_1)} = \frac{\lambda}{\Delta \lambda}$
Step 4	 Aspheric Lens 2: focal length 4.5 mm Isolates 1st order from grating for best resolution
Step 5	 Target Air force target to gauge resolving power
Step 6	 Spectral analysis Decomposes backscatter to form image

Final Design

Figure 6: Laser Broadband Source The fiber through which light is transmitted is also shown. (http://www.ofr.com/Images/FO/fo-51d.jpg)

Figure 7: Aspheric Lens (http://www.thorlabs.com/thorProduct.cfm?partNumber=C230TM-A

Figure 8: Transmission Grating

5 ☰ ||| $\parallel \parallel \equiv 1^{-2}$ 6 **Ξ III**

Figure 9: US Air Force target used to gauge

Figure 10: Example spectral output

Validation

Figure 12: Optical spectrum analyzer. Note: Artificial data rendering to illustrate expected output

Figure 11: Image and data

acquisition pathway

Validation Steps:

•White laser output is coupled into fiber

- •50-50 splitter separates beam and creates pathway into
- reference and sample beams (interferometer)

•2D lateral sampling

•Backscatter is processed by spectrometer

Future Work

- Focus on improving:
- Lateral resolution
- Miniaturization of parts Improving biopsy

applicability

- Needle Encasing
- Decrease likelihood of false negatives

References

Boppart, S. A. (2005). Optical coherence tomography.http://bil.nb.uiuc.edu/biophotonics/technology/oct/

Fujimoto, J, Boppart, S, Tearney, GJ, Bouma, B, Pitris, C, Brezinski, M. (1998). High resolution in vivo-intra-arterial imaging with optical coherence tomography. Heart, 82, 128-133.

Hwang, Joo et al. (2005). Optical coherence tomography imaging of the pancreas: A needle-based approach. Clinical Gastroenterology and Hepatology, 3, 549-552.

Xingde Li, Christian Chudoba, Tony Ko, Costas Pitris, and James G. Fujimoto. (2000). Imaging needle for optical coherence tomography. Optics Letters, 25(20), 1520.

Acknowledgments

We would like to thank Profs. Block, Sanders and Sheinis for their help.

Figure 13: Current Biopsy

Needle (http://www.uresil.com/products/needles.htm)