

Hand Hygiene Indicator

Emily Andrews, Allie Finney, Rachel Mosher, Susie Samreth Client: Dr. Chris Crnich | Advisor: Bill Murphy Department of Biomedical Engineering University of Wisconsin-Madison

Motivation

Every year, at least 80,000 deaths are caused by hospital-associated These infections. are communicable diseases contracted in the hospital and often transmitted to patients by their clinicians. Approximately a third of these infections could be prevented by the implementation of a hand hygiene program, but hand hygiene compliance is reported to be only 20-50%. Additionally, hand hygiene has transitioned from traditional soap-and-water hand washing to use of alcohol-based hand sanitizers, rendering existing hand hygiene teaching tools obsolete.

Problem Statement

In order to teach proper hand hygiene technique and ensure quantitative compliance. а measure of hand hygiene is necessary at common problem areas, including finger tips and between fingers.

The objectives of this project are to:

1.Identify a molecule with intrinsic fluorescence to act as a marker

2. Quantitatively measure marker fluorescence associated with improper hand hygiene.

Product Requirements

Fluorescent Marker must be:

- Safe for application to human skin, ideally FDA approved
- Distinct from intrinsic fluorescence of skin
- Compatible for use with alcohol-based hand sanitizer:
 - Attenuation with exposure to alcohol
 - Ability to mix in hand sanitizer

Marker Measurement must be:

- Portable for use in clinical environment
- Able to provide real-time, quantitative measurement on three-dimensional surface
- Consistent, standardized and focus on problem areas

Fluorescent Marker

Fluorescent Molecule Visirub: diethylaminocoumarin

Application 1

 Fluorescent marker mixed with hand sanitizer •After performing hand hygiene, marker fluoresces where hand sanitizer has been applied, indicating proper coverage

Application 2

•Fluorescent marker applied hands, unbeknownst to clinician •After performing hand hygiene, marker fluorescence is attenuated where hand sanitizer has been applied

·For both applications, fluorescence can be quantified and correlated to hand hygiene proficiency

Marker Measurement

Spectrofluorometer Ocean Optics Jaz

- Portable with internal microprocessor
- Optical fiber assembly for flexible •
- measurement on three-dimensional surface Displays real time spectrographs and intensity •
- values
- Customizable and adaptable to different fluorescent molecules

Hand Holder

- Allows standardization of testing method and • reduces error
- Maintains hand position for uniform measurement of problem areas:
 - Fingertips
 - Thenar space
 - Back of hand

Thanks to Kevin Eliceiri for his continuous support and guidance.

Goals:

 Determine if fluorescence could be detected in cuvette using spectrofluorometry

 Identify molecule with greatest emission intensity in 300-600 nm range

 Measure attenuation over time due to addition of alcohol

Discussion of Results:

 Visirub spectrograph displays significant fluorescence intensity attenuation

• 75% change in intensity

•Two-sample t-test (based on a 95% confidence interval) revealed that Visirub demonstrated the highest P-value

P=4.54E-7

Marker Visirub 7/ /9% D&C Red 52.75% Tryptophan 45 72% Tyrosine 3.75% Phenylalanine 3.19% DavGlo 47.58% GloGerm 73.83% Glitterhug 6.80%

4.55E-07

7.11E-03 1.71E-01

1.44E-02

1.20E-01

9.46E-02

6.49E-03

1 60F-02

ntensity Compariso	n:	Marker	P-V
Ethanol Addition	 Visitub 	Visirub	
1 is	 VisinubOH DNC 	D&C Red	
	DNCOH	Tryptophan	
	 Tryptiophen TryptiophanOH 	DayGlo	
	 Davgio Annatados 	Tyrosine	
	Tyroslite	Phenylalanine	
	TyrosineOH Phenylalanine	GloGerm	
	PhenylalanineOH diloarem	Glitterbug	
	 GlogermDH 		

Future Work

- Determine appropriate parameters and purchase Jaz spectrofluorometer
- Conduct testing using Jaz spectrofluorometer on problem areas
- Optimize fluorescent molecule concentration and coverage for accurate detection and coverage
- Modify hand holder to achieve uniform measurement
- Determine standards for hand hygiene

