Quantification of Sensory Abnormalities

Client: Dr. Miroslav Backonja

Advisor: Prof. Mitchell Tyler

Group Members (in order of appearance): Colleen Farrell (BSAC), Adam Pala (BWIG), Jeremy Schaefer (Leader), Steve Wyche (Communication)

Presentation Overview

- I. Background Information
- II. Problem Statement
- III. Client Requirements
- IV. Data Analysis
- V. Design Alternatives
- VI. Design Matrix
- VII. Final Design and Future Work

I. Background Information

- Neuropathic Pain
 - cutaneous abnormality
 - sharp pain, tingling, burning, numbness
- Record changes in sensation
- Tracing paper currently used
- Accurate, repeatable method needed
- No commercial competition

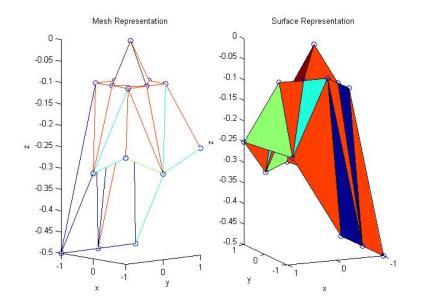
II. Problem Statement

Dr. Miroslav Backonja, a neurologist who works in pain medicine at UW Hospital, has expressed the need for a more accurate method to measure the surface area of cutaneous sensory abnormalities. Currently, *tracing paper* is used to trace the affected area and a *plenimeter* is used to measure surface area. Dr. Backonja is looking to be able to measure surface area on contoured regions of the body in a more accurate and repeatable manner.

III. Client Requirements

Our client, Dr. Backonja, has specified the following **constraints** regarding our design prototype:

- ✓ Minimally invasive
- ✓ Accurate measurement (acceptable error rate: 5–10%)
- ✓ Cost effective
- Consistent, reproducible results
- ✓ Clinical use
- Data should be collected and displayed
- ✓ Under \$1000 if possible


IV. Data Analysis

 Once the data is collected as points having three spatial dimensions (i.e. P_i(x_i, y_i, z_i), for points i=1 to i=N), it is sent to MATLAB

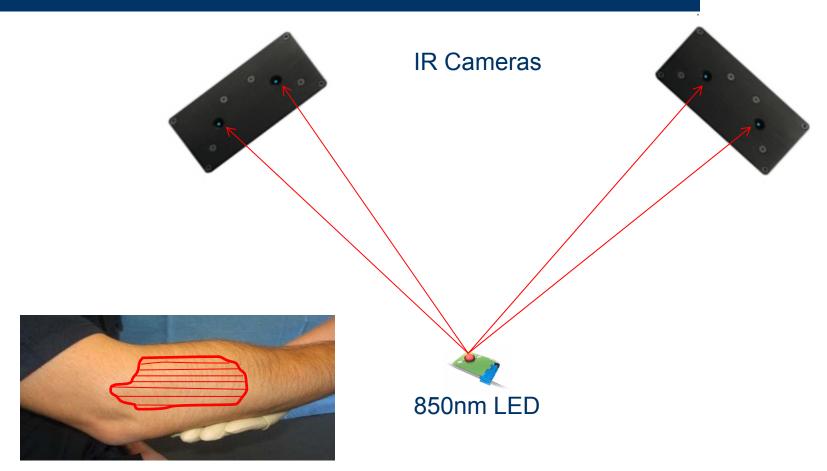
$$\vec{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \end{bmatrix}$$
$$\vec{y} = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}$$
$$\vec{z} = \begin{bmatrix} z_1 & z_2 & \cdots & z_N \end{bmatrix}$$
$$P_1 P_2 \cdots P_N$$

(IV. Data Analysis – continued)

 The interpolated surfaces can be visualized using MATLAB's 3D "tri" functions (which employ the Delaunay triangulation algorithm)

(IV. Data Analysis – continued)

• Finally, the **surface area** is calculated using *Heron's Formula*


$$A = \sqrt{s \left(s - \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}\right) \left(s - \sqrt{\sum_{i=1}^{N} (y_i - z_i)^2}\right) \left(s - \sqrt{\sum_{i=1}^{N} (z_i - x_i)^2}\right)}$$

where
$$s = \frac{\sqrt{\sum_{i=1}^{N} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{N} (y_i - z_i)^2} + \sqrt{\sum_{i=1}^{N} (z_i - x_i)^2}}{2}$$

V. Design Alternatives

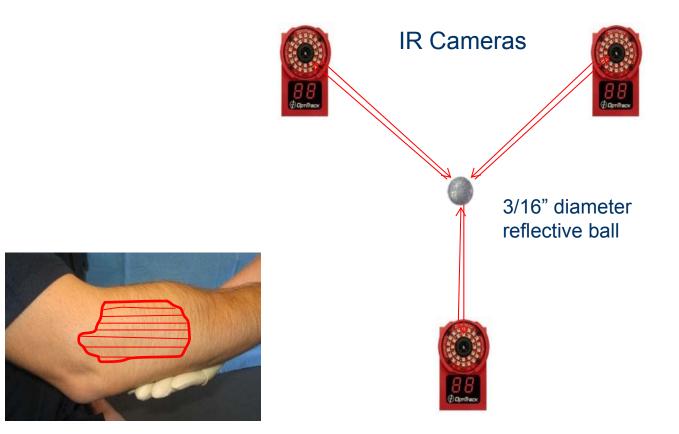
- Active Infrared
- Passive Infrared
- Laser

Active Infrared

http://z.about.com/d/firstaid/1/0/e/-/-/Arm02.jpg

http://www.phasespace.com/productsMain.html

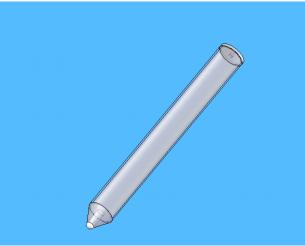
Active Infrared (continued)


• Advantages

- Highly Accurate (< 1mm)
- Data capture easy and fast

- Disadvantages
 - Very high initial cost (~\$20,000)
 - LED must be moved across the patient's skin
 - LED must be pointed to camera

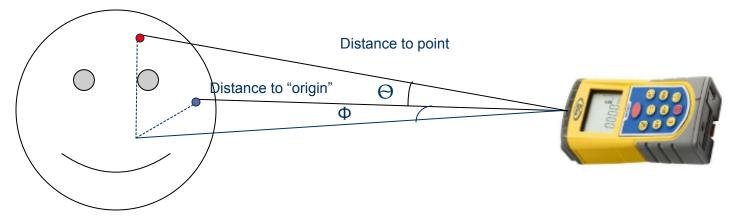
Passive Infrared



http://z.about.com/d/firstaid/1/0/e/-/-/Arm02.jpg

Passive Infrared (continued)

- Advantages
 - Highly Accurate
 - Data capture easy and fast
 - Cheaper than Active Infrared (~\$2,000 compared to ~\$20,000)


- Disadvantages
 - High initial cost
 - Reflective ball must be moved across the patient's skin

Laser

- Advantages
 - Inexpensive (\$130)
 - No direct contact with patient

- Disadvantages
 - Difficult to use
 - Time consuming
 - Less Accurate (~2mm)

VI. Design Matrix

	Possible Points	Passive IR	Active IR	Laser Meter
Accuracy	15	15	15	11
Ease of Use	10	8	7	2
Time	10	8	8	2
Cost: Initial	15	7	3	13
Repeatability	5	5	5	3
Patient Comfort	10	7	7	10
Total	65	50	45	40

VII. Future Work

- Obtain IR camera system
- Design and create pen
- Create and refine algorithms
 - Modeling "overlapped" surfaces
- Put system together
- Testing
 - Systematize the procedure

Questions?