Skin Color Monitor

Vince Mi Brooke Sampone Amy Lenz Grant Smith

POINTS OF INTEREST

- Problem Statement
- Physiology of Hot Flashes
- Current Devices
- Previous Semester's Work
- Design Alternatives
- Final Design
- Testing Methods
- Summary
- Questions?

PROBLEM STATEMENT

• A skin color monitor that records color changes that occur during hot flashes, which could be used to provide the objective measurement needed for therapeutic drug testing for **menopausal women**. The device is to be capable of discerning color changes while remaining small and at a low cost. The device adheres to the skin in the upper chest region. An LED will shine light onto the skin and a photodiode will register the change and that will affect the output voltage. The changes in the voltage are recorded every 10 seconds.

PROBLEM STATEMENT

- Records color changes during hot flashes
- Provide objective measurement for therapeutic drug testing
- Small and low cost
- Adheres to upper chest
- Readings recorded every 10 seconds

WHAT IS A HOT FLASH?

- Sudden onset of body warmth including flushing and sweating
- Low estrogen levels
- Hypothalamus registers high body temperature
 - Increased heart activity
 - Blood vessels dilate
 - Blood flow increases
 - Blushing
 - Heat loss from surface of skin
- Socioeconomic influences

CURRENT DEVICES

- o Journals
 - Unreliable, subjective
- BIOLOG
 - Device by UFI
 - Too heavy, bulky
 - \$4200
- Temperature Sensors
- Professor Webster's Skin Conductance Device
 - Analyzes different data

FALL 2007 PROGRESS

- Blue LED
 - Researched to discover wavelength best in region of red light
 - Blue suggested by Kevin Eliceiri showed greater difference than red light
- Housing
 - Black polycarbonate case with acrylic shield
 - 3.8 cm x 1.4 cm
- Future Work
 - Develop method of attachment
 - adhesive
 - band

Spring 2008 Progress

- Modified Housing
 - Dome shape (aesthetics), small acrylic clear plate (safety and weight)
 - Maintained similar size aspects
- Designed more complicated circuitry
 - Differential amplifier
 - LED, phototransistor, and op-amp branches
- Blue LED
 - Tested to pick up color changes
 - Recommended more testing for different colors, ethnicities, and purchasing different brand

DESIGN ALTERNATIVES

- Different LED Colors/ Wavelengths
- Multiple LEDs and sensors
- Lasers, gratings, other light emitters
- Smaller sensor housing
- Acrylic shield sunken into housing
- Variable gain circuit with potentiometers

BIOLOGICAL RATIONALE

FINAL DESIGN

• Continue with single LED design

- Simplicity
- Previous testing shows promising results
- Smaller sensor housing
 - Sunken in acrylic plate
 - Possible rapid prototyping

TESTING METHODS

• Test response of various colors of LEDs

- Controlled intensity
- Test on skin
- Circuitry
 - Low pass filters
 - Correct gain
 - Correct offset
- Reliability
 - LED and circuit lifespan

SUMMARY

- Want to detect hot flashes using skin color
- Two semesters of progress already
- Main approaches this semester
 - Circuitry
 - New housing
 - LED selection
 - Testing

QUESTIONS?