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ABSTRACT  
Ultrasound, a common imaging technique, is used to provide information on tissue 

structure.  With additional processing, this data can yield the change in a tissue’s stiffness as it is 

strained.  Physicians and researchers could use this information to identify damaged locations in 

tendons and other structures.  

The final goal of this project is to implement a program on a DSP chip which will perform 

this processing quickly enough for a physician to conduct the analysis during a patient visit.  This 

semester, our goals were twofold:  

 

1. Combine and revise a set of existing MATLAB ultrasound analysis 

algorithms to decrease their execution time 

2. Develop an interface between a computer and a DSP chip  

 

We successfully combined the algorithms and reduced their processing time by 87% while 

introducing a 5.9% difference in the final pixel calculations.  The revised algorithm also processed a 

30-frame, 434×532-pixel ultrasound video, a task which the original algorithm could not perform. 

We also developed an interface between a computer and DSP chip that was capable of taking a 

movie file from a computer, transcoding it, and displaying it on an output device. 

Future work will include reducing the percent difference between the algorithm output and 

the original algorithm’s output, transcoding the algorithm into C, and expanding the interface to 

send more parameters to the chip from the computer as well as send multiple frames to the chip at 

the same time. 

INTRODUCTION  

Ultrasound is a widespread, non-invasive imaging technique with no reported side effects, 

used to evaluate internal organs and tissue structures by measuring their sound reflection properties 

(Brown 2003; Ophir 1998).  This technique works by sending a high frequency sound pulse 

throughout the tissue and measuring the properties and timing of the returning signal.  Data from 

the returning signal is interpreted and displayed as a picture, which is used to find tissue 

abnormalities so that proper treatment may be administered.  Abnormalities generally result in 

changes in the stiffness and structure of tissues and can be seen in an ultrasound image.  However, 

only major changes in the stiffness or structure of a tissue will be apparent in a standard ultrasound 

image.  

 

It is possible to improve the diagnostic capability of ultrasound by using additional data 

already contained in the ultrasound data set. One way of doing this utilizes the theory of 

acoustoelasticity, in that tissue stiffness changes as it is deformed.  The stiffness of a damaged 

tissue will change differently with deformation than the stiffness of a healthy tissue, thus allowing 

medical practitioners to utilize ultrasound technology to diagnose a variety of conditions ranging 

from tendon damage to cancer. 

 

Incorporating the properties of acoustoelasticity into ultrasound technology can be 

especially useful in the diagnosis of conditions involving low-level tissue damage.   The detection 

and assessment of low-level tissue damage is very important; if left untreated, it can lead to a loss 
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of tissue function. Although changes in tissue stiffness during deformation are is not tested by 

standard ultrasound, research by Dr. Vanderby and Dr. Kobayashi (2008) has shown that the 

relationship between a tissue’s stiffness and the amount of deformation it undergoes can be used to 

help diagnose low-level tissue damage.  As tissue stiffness can be related to the intensity of the 

ultrasound image, an algorithm to analyze ultrasound data could provide information about how 

tissue stiffness changes with deformation.  Dr. Vanderby and Dr. Kobayashi have used two 

MATLAB algorithms to analyze a series of ultrasound images. Their research is aimed at 

determining the feasibility and accuracy of using ultrasound technology to diagnose pathologies 

based on the tissues’ changes in stiffness at a constant rate of strain. 

 

The algorithms that carry out the stiffness-strain analysis on ultrasound media are currently 

being run on a computer, with only the capability to analyze stored images.  Analysis using these 

algorithms on a large data set (≥50 MB) takes more than a few hours to run.  This time delay limits 

the practicality of using this analysis in a clinical or research setting.   

 

To increase the speed with which these algorithms execute, we propose using these 

algorithms in combination with a Digital Signal Processing (DSP) chip.  This could potentially 

allow for data processing in near real time.  The increase in speed would allow for:   

 

 Analyzing data on-site in a clinical or research setting 

 Allowing the user to immediately verify the quality and accuracy of the data  

 Allowing the data to be available quickly for diagnosis  

 

Dr. Vanderby’s and Dr. Kobayashi’s research offers advancement to ultrasound imaging 

that could greatly improve current diagnostic tools.  The chip will greatly speed up data analysis 

because of its ability to perform simple calculations quickly.  Texas Instruments has provided 

donated a DSP chip and development kit for use in this project.  For detailed design specifications 

of our proposed device, see Appendix 1. 
 

BACKGROUND  
 

ULTRASOUND  
 

Ultrasound is a powerful imaging technique used to evaluate internal tissue structure. 

Because of its price and lack of side effects, ultrasound is one of the most popular imaging 

techniques (Vanderby 2008).  It can be used for analysis of internal tissue structure as well as 

functional and structural defects.  Because ultrasound waves pass through low density tissues more 

easily, it is useful for examining fluid-filled organs such as the uterus in pregnancy, and soft organs 

such as the liver. Special applications of ultrasound can detect congenital heart disease, cysts, and tumors.    

An ultrasound machine operates by a transducer sending a pulse of high-frequency sound 

through an area of interest in the body and measuring the fraction of energy reflected back as well 

as the timing of the returning signal. The timing is used to calculate distance to the object. The 

fraction of reflected energy is proportional to the tissue density and velocity of sound in the tissue. 
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The velocity of sound in the tissue is proportional to the stiffness of the tissue (Webster 1998). 

Research by Pourcelot, et al., found that a correlation exists between the ultrasonic wave 

propagation velocity of the equine superficial digital flexor tendon and the force applied to this 

tendon along its main axis (2005).   The tissue’s wave propagation velocity was shown to be 

directly related to its increasing stiffness. Thus, the intensity in ultrasound images is proportional to 

the stiffness of the tissue:  

 

Intensity ~ Sound Velocity ~ Stiffness 

 

Analyzing changes in intensity as a structure is being stretched can yield information about its 

changing stiffness.  
 

ACOUSTOELASTICITY  
 

Acoustoelasticity is the relationship between the velocity of sound in a material and the 

material’s stiffness and stress. The material’s stress is proportional to the strain (normalized change 

in length) applied to it. Stiffness is defined as the force required for an given amount of tissue 

deformation (Figure 1). Studies have shown a positive correlation between stiffness and strain in 

tissues, in that .  aAs a material is stretched, it becomes stiffer, causing more sound to be reflected.  

 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 
 

Figure 1: A schematic diagram representing how stiffness, k is defined and calculated.   Block 
arrows represent a downward force applied to a specific object, with relative deformation 
occurring only in the vertical direction.   The change in length δ is calculated by subtracting final 
length from original length, 𝐿𝑓𝑖𝑛𝑎𝑙 − 𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 

 

One of the techniques using this property is elastography. By using the acoustoelastic 

properties of tumors, ultrasound images before and after tumor compression can be analyzed to 

better resolve tumors than using regular ultrasound.  Though a tumor or a suspicious cancerous 

F = force (N) 
applied to object 

𝑺𝒕𝒊𝒇𝒇𝒏𝒆𝒔𝒔 = 𝑘 =
𝐹𝑜𝑟𝑐𝑒

𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
=

𝐹

𝛿
 

 

 

𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝛿  
the change in length  

Formatted: Indent: First line:  0"



TI DSP Project: Final Report 

Page 7 

 

 

growth can be 5-28 times stiffer than normal soft tissue, the rate at which its stiffness increases with 

strain is also significantly different and can further aid in detection (Garra, et al 1997; Figure 2).     
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  A sonogram and an elastrogram of the same tissue area.  The elastogram increases the 
recognition of the large tumor  and also detects another, smaller tumor far more clearly than 
the sonogram.  Obtained from Ophir (1998).  

 

The acoustoelastic properties of tissues can also differentiate damaged tissues based on 

changing stiffness (Vanderby and Kobayashi, 2008).   By plotting mechanically calculated strain 

and the force required forits this deformation, a relationship between stiffness and strain can be 

found (Figure 3; Vanderby and Kobayashi 2008).  The difference between the  
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
  slopes can 

be used to differentiate the tissues.  This relationship difference shows how that although damaged 

tendons are generally less stiff than healthy damaged tendons, their stiffness increases at a greater 

rate.    

 

 

Figure 3:  Graph of stiffness versus strain relationship in damaged (red) and undamaged 
(blue) tendons.  Stiffness and strain forces calculated in vitro. Borrowed from Kobayashi 

and Vanderby (2008).  

 

 As damaged tendons have been found to have different positive correlationstiffness vs. 

strain slopes than healthy tissue in vitro, the use of ultrasound can be used to detect stiffness in 

vivo.  By setting pre-specified strain conditions, ultrasound video can be analyzed to determine the 
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stiffness-strain relationship.  An analysis algorithm was developed by Dr. Vanderby and Dr. 

Kobayashi to determine the stiffness-strain slope of the a tissue in question.  As development 

continuesFurther research hopes to determine, the stiffness-strain relationship can be accurately 

found in a non-invasive way.    

GOALS  
 The ultimate goal of this project is to create a diagnostic device that measures and displays 

the distribution of stiffness vs. strain in a tissue within minutes of data acquisition.  This goal will 

be reached in three stages, which span over the course of several semesters. 

 Goal 1—This Semester 
 Optimize the client’s algorithm so that itthey isare capable of analyzing 

data quickly and efficiently 

 Focus on the speed and accuracy of the revised algorithm compared to 

that of the original algorithm 

 Process 30 frames of 434 x 532 pixels (half of the total size of provided 

ultrasound files from our client’s ultrasound files) in under 5 minutes   

 Interface the DSP chip with a computer 

 Goal 2—Next Few Semesters 
 Implement the revised algorithm on a DSP chip 

 This device will function as aDevelop a working prototype  

 Device will Iinterface the prototype with a computer and analyze 

ultrasound data soon after it has been gathered 

 Goal 3—Future 
 Createing a device that is robust enough to be used in clinical and 

laboratory settings 

 Device will perform analysis on the ultrasound data and generate output 

within minutes  

 

HARDWARE  
Electronically, an image consists of a series of pixels, which are stored as numbers 

representing either the pixel’s shade of gray or its mix of red, blue, and green. Image processing 

involves performing a series of basic mathematical operations on each of those numbers. Thus, the 

speed of an image processor relies on its ability to quickly perform many iterations of relatively 

simple calculations. 

Personal computers are designed to handle data manipulation effectively and are not 

optimized for performing many basic calculations necessary for image processing.  An alternative 

to a personal computer is a digital signal processor (DSP). DSPs are designed specifically to 

perform simple mathematical operations quickly (see Figure 4). Also, DSPs have the capability for 

parallel processing similar to that of multi-core computer processors. Furthermore, DSPs are 

hardwired with separate memory components for their programs and their data, which makes 

memory management simpler and reduces the amount of resources spent on it. The data on a DSP 

chip is stored in RAM which is about 1000 times faster than a hard drive used in a computer. 

Because of all of these factors, a DSP chip was chosen for this project as one of the ways to 

decrease processing time and allow on site data analysis.  
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The increase in processing speed with a DSP chip over that with a computer is difficult to 

predict.  Due to the high rate at which the chip operates and the comparatively low amount of RAM 

it has (128 MB compared to a PC's 1-2 GB), the speed with which a program runs on the DSP chip 

depends on how it is written (particularly the way it addresses memory). Additionally, when large 

sets of data such as ultrasound video need to be analyzed, they cannot be stored on the chip because 

the chip uses its RAM for data storage. Thus, they must be transferred to the chip piece by piece, 

analyzed, and transferred back. The transfer of files occurs over the Ethernet interface and is slower 

than the processing. Therefore, the number of data transfers that need to be performed directly 

affects the processing time for a data set. 

Two programs will be necessary for the chip's operation – the ultrasound stiffness vs. strain 

calculation program itself and the interface program that controls the transfer of files between the 

chip and the computer. Programs on the chip are stored in flash memory in machine code. A 

compiler called Code Composer Studio (v. 3.3), provided by Texas Instruments, can compile C 

code into an executable for the chip.  It also contains a driver that is used to load programs onto the 

DSP chip's flash memory via USB. However, the Ethernet interface needs to be set up for data 

transfer. Texas Instruments provides example source code for a program that transfers a movie file 

onto the chip, decodes it, and outputs it to a display device. This program can be recompiled and 

altered so as to become the template for the DSP chip interface needed for this project. 

The interface program will involve a component that runs on the computer and allows the 

user to input parameters that are used in the on-chip processing. Once the values are selected, the 

ultrasound sound video will be sent to the chip frame by frame and processed with the stiffness vs. 

strain algorithm. The result of the processing, a map of the rate of change of stiffness over strain 

between frames, will be sent back to the computer. The data flow is outlined below in Figure 5. 

 

Figure 4.  Explanation of data manipulation and mathematical calculation; both of which are 
capabilities expected of typical processors. 
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FIGURE 5: DATA FLOW FOR ULTRASOUND DATA.  PROCESSING WITH THE STIFFNESS VS.  STRAIN ALGORITHM IS PERFORMED 

ON THE CHIP. 

A Texas Instruments DSP chip and development kit was made available by the UW-

Madison BME Department to be used in this project. The chip, a TMS320C6437, has 600 MHz of 

processing power. Its development board has 128 Mb RAM for data storage and 64 Mb Flash 

memory for program storage. The chip is optimized for multimedia processing and contains video 

and audio output ports for display. 

 

 

FINAL ALGORITHM  
 

The algorithm used in this project loads an ultrasound movie, allows the program operator to 

select an area of interest, calculates the relative rate of change of intensity (i.e. stiffness) of small 

blocks of the area of interest, and outputs a frame from the ultrasound video with the area of interest 

color-coded to indicate which regions of it have a higher rate of stiffness relative to the other 

regions. The sections of the algorithm are described below in more detail.  

 

IMAGE NO R MAL IZ AT IO N  

Since image intensity is proportional to stiffness and stiffness is proportional to tissue 

density, if the density of a tendon is known, its stiffness can be calculated from the intensity of the 

ultrasound pixel. 

Unfortunately, there are currently no reliable methods of determining absolute tendon 

density from ultrasound alone, so the exact stiffness of the tendon cannot be calculated.  Instead, the 

algorithm uses relative stiffnesses to compare different parts of the tendon. The algorithm 

normalizes the intensity values of each frame in the ultrasound video to values between 0 and 1 

with the following steps: 

 The images are originally in RGB format - a three-dimensional matrix format in which each 

pixel has three numbers (relative amounts of red, green, and blue color associated with it. 
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They are converted to intensity format - a two-dimensional matrix with values ranging 

between 0 and 1. 

 The images are then normalized to allow calculation of relative stiffness.  The maximum 

intensity value of each frame is identified, and all of the intensity values of the frame are 

divided by it.  The algorithm then stores each normalized frame of the movie as an array of 

matrices. 

 

OBJECT  ISOL AT IO N  

The purpose of the object isolation algorithm is to prevent unnecessary processing and thus 

save time.  It does this by isolating the region which the user is interested in so that the subsequent 

algorithms can limit their processing to the isolated region, rather than the entire frame.  The mask 

is calculated from the first frame, and then used for all of the subsequent frames in the video. 

 

The object isolation accepts a single normalized intensity image as its input, and outputs a 

binary matrix (the “binary mask”) with the same dimensions as the image, in which the region of 

interest pixels are 1’s, and the other values are 0’s.  The binary mask then serves as a key for the 

subsequent algorithms to determine if a given pixel should be processed or ignored. 

 

The algorithm consists of the following general steps: 

 The binary mask is initialized as a matrix of zeros, with the same dimensions as the input 

image.  Each value in this output matrix corresponds to a pixel in the input image.   

 

 The input image is displayed so that the user can click on the object to be isolated, which 

should consist of a region of pixels with a higher intensity than their surrounding pixels (i.e. 

a “bright” region). 

 

 The intensity of the pixel that the user selected, with the pixels three layers above, below, 

and to either side of it (a square containing 49 pixels total), are averaged.  This “threshold 

average” then becomes the basis for determining whether or not surrounding pixels belong 

to the area of interest. 

 

 The algorithm then processes the pixels in a series of concentric shells radiating outward 

from the selected area.  If a pixel has a greater intensity than the threshold average, or falls 

within a specified range below the threshold average, it is added to the area of interest (i.e. 

its corresponding “0” in the binary mask is replaced with a “1”). 

 

 

 

 

The intensity of a tissue can vary significantly throughout the region; often, tendons 

have a bright spot, and fade to a lower intensity near their edges. Thus, the threshold is 

constantly adjusted so that if a gradual fading occurs, the edges of the tissue can still be 

included.  
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When a pixel with an intensity below the threshold average is added to the area of 

interest, the threshold average is recalculated to include it.  However, if the same process 

were used for pixels above the threshold, the threshold average could potentially increase 

during processing of a bright spot, preventing a dim region just beyond it from being 

included in the area of interest.  Thus, when a pixel with an intensity value at or above the 

threshold average is added to the area of interest, a value equal to the threshold average is 

averaged in with the threshold average.  In summary, when the algorithm includes a pixel 

dimmer than the threshold average, the threshold average decreases.  When the algorithm 

includes a pixel brighter than the threshold average, the threshold average becomes more 

difficult to change.   

 

 When the algorithm reaches a concentric shell which doesn’t include any pixels which can 

be added to the area of interest, it stops; the area of interest is complete. 

 

 The area of interest is then outlined on the input image, so that the user can confirm that the 

correct region of interest was selected. 

 

CO NVOL UT IO N AND DO WNSAMPL ING  

Unfortunately, ultrasound images are noisy; their pixels are often randomly lighter or darker than 

the appropriate intensity for the pixel.  Thus, if the change in intensity for regions of the area of 

interest were calculated on a pixel-by-pixel basis, the results would be aberrant. 

 

To avoid this problem, the area of interest is divided into a series of blocks, and the average 

intensity of each block is used instead of the intensities of the individual pixels. This is done using a 

matrix operation called a convolution.  The process is as follows: 

 For each frame of the ultrasound video, a small matrix is created containing the pixel 

intensities of the area of interest and its surrounding region (the dimensions of the small 

matrix are determined by the height and width of the area of interest).   

 A matrix of 1’s, called the “kernel”, is created with dimensions specified by the user.  The 

dimensions of this matrix determine the resolution of the final output of the algorithm; the 

larger the kernel, the lower the resolution. 

 The small matrix containing the area of interest is then convolved with the kernel.  In this 

matrix operation, the kernel is centered, sequentially, over each element of the matrix, the 

average values are placed into a separate matrix.  Thus, each element in the new matrix 

becomes the average of its equivalent, as well as the pixels neighboring its equivalent, in the 

old matrix. 

 The image is then downsampled to reduce the number of calculations performed by the 

subsequent portion of the algorithm. This is done in proportion to the dimensions of the 

kernel; if the kernel is w columns wide and h rows tall, then every w’th pixel in every h’th 

row of the small matrix is selected and added to a new downsampled matrix, which looks 

like a miniature version of the original video frame. 

 The process is then repeated for each frame in the video. 

 

ST IFF NESS V S .  ST R AIN  
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The intensity of the downsampled matrix is then analyzed and the stiffness vs. strain 

distribution is calculated. For every pixel of the downsampled matrix, two values are calculated, 

called top and base: 

𝐵𝑎𝑠𝑒 =
(1 + 𝑝𝑖𝑥𝑒𝑙′𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡𝑒 𝑓𝑖𝑟𝑠𝑡 𝑓𝑟𝑎𝑚𝑒)2

(1 − 𝑝𝑖𝑥𝑒𝑙′𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡𝑒 𝑓𝑖𝑟𝑠𝑡 𝑓𝑟𝑎𝑚𝑒)2
 

 

𝑇𝑜𝑝 =
(1 + 𝑝𝑖𝑥𝑒𝑙′𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒)2

(1 − 𝑝𝑖𝑥𝑒𝑙′𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒)2
 

 

By then dividing top by base one can find a ratio that indicates how much the stiffness of 

the material in question has changed compared to its stiffness in the first frame.  This ratio is 

calculated for every pixel in every downsampled frame and is stored in a matrix.     

 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 =  

𝑇𝑜𝑝𝑓𝑟𝑎𝑚𝑒  1 ÷ 𝐵𝑎𝑠𝑒

⋮
𝑇𝑜𝑝𝑓𝑟𝑎𝑚𝑒  𝑛 ÷ 𝐵𝑎𝑠𝑒

  

 

Next, a linear system is set up as shown below: 

 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 =  
𝑠𝑙𝑜𝑝𝑒

𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
 ∗ 𝑆𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎 

 

Stiffness and strain data are both known values; slope and y-intercept are the unknown values.  A 

graphical analogue to the current data setup would look like this: 

 

 
F IGURE 6.   GRAPHICAL ANALOGUE TO THE CURRENT DATA SETUP.   ONE CAN SEE THAT STIFFNESS IS THE DEPENDENT VARIABLE AND STRAIN IS 

THE INDEPENDENT VARIABLE.   THE DATA POINTS ARE THE STIFFNESS VALUES AT GIVEN STRAIN.   WHAT WE WISH TO OBTAIN IS THE SLOPE 

AND Y-INTERCEPT OF THIS DATA AND THIS CAN BE DONE VIA LINEAR ALGEBRA. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5

St
if

fn
e

ss
 (

N
e

w
to

n
s/

m
e

te
r)

Strain

Stiffness vs. Strain



TI DSP Project: Final Report 

Page 14 

 

 

 

As with any linear system, simple algebra can be used to any unknowns. Using some basic 

algebra, one can find the values of the unknown values: 

 
𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠

𝑆𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎
=  

𝑠𝑙𝑜𝑝𝑒
𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

  

 

This operation is carried out for every pixel in the downsampled image.  Only the slope value is 

stored as the y-intercept value is not used in any further parts of the algorithm.  We then end up 

with a matrix of the following form: 

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑙𝑜𝑝𝑒𝑠 =  
𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 1 …

⋮ ⋱
  

 

MAPP ING  

The mapping algorithm takes the final output of the stiffness vs. strain algorithm which is a matrix 

containing the rate of change of each pixel of the downsampled matrices, color-codes the rates of 

stiffness change, and then overlays the color-coded image of the area of interest onto a frame of the 

ultrasound video.  The output of this algorithm is one image which     “points out” where the areas 

of greatest stiffness change are.               

 This process utilizes the following steps: 

 The matrix from the stiffness vs. strain algorithm is converted to an indexed image format; 

its values are normalized so that they range from 0 to 255 (256 color format). 

 A new color scheme is applied to the indexed image using MATLAB’s “colormap” 

command, in which different matrix values between 0 and 255 reference different rgb 

colors.  We used MATLAB’s “hot” color scheme for the recoloring, in which progressively 

increasing matrix values reference progressively brighter shades of red and yellow, so that 

the highest values of the matrix look as if they are white hot (see Appendix 5). The color 

scheme, however, is easily changeable, and could easily be altered to suit a physician or 

researcher’s preference. 

  The re-colored image is then converted to rgb format, and its size is increased to its original 

dimensions (i.e. to match the height and width of the area of interest). The conversion is 

done so that the color map is preserved when it is overplayed over the initial image.  

 The area of interest in the first frame of the ultrasound video is replaced by its 

corresponding pixel in the resized, recolored image.  This is done with a for loop which 

checks to see if a pixel in the resized, recolored image corresponds to a “1” in the binary 

mask, in which case it is copied into the original ultrasound frame. 

 

 

 



TI DSP Project: Final Report 

Page 15 

 

 

 
 

 

 
 

 

 

 

 

ALTERATIONS TO THE ORIGINAL ALGORITHMS  
We made a variety of alterations to the algorithms we received from our client, eliminating 

extraneous calculations where possible to allow the algorithm to run more efficiently.  The original 

code that our clients were using is provided in Appendices 3 and 4, with our code provided in 

Appendix 5. The most significant changes we made are described below. 

 

IMAGE NO R MAL IZ AT IO N  

The original algorithm converted each ultrasound video frame from rgb to intensity images 

with MATLAB’s “rgb2hsv” command, which converts the three-dimensional rgb matrix into a 

three-dimension hsv matrix, in which each pixel has three numbers associated with it (hue, 

saturation, and value).  The “value” matrix was then used as the intensity matrix.  This method was 

inefficient because two-thirds of the calculated values (hue and saturation) were not used in the 

subsequent algorithms unnecessarily consuming memory.  Thus, we replaced this command with 

the series of commands described earlier, which calculate intensity without using hue and 

saturation.   
 

Figure 5.  Graphical layout of the overall structure 
of the algorithm. 

Figure 6.  Ultrasound image at every step of the algorithm.  From left to right: 
Original image, region of interest clipped out, stiffness vs. strain calculations 
carried out, and the stiffness vs. strain distribution overlayed on the original 
image.  Ultrasound images provided by Dr. Kobayashi. 
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OBJECT  ISOL AT IO N  

Our client provided us with separate object isolation algorithm and stiffness vs. strain 

algorithms. The clipping algorithm output an image with the area of interest outlined, as well as the 

coordinates of the boundary pixels for the area of interest.  Since the stiffness vs. strain algorithm 

was not designed to run with the clipping algorithm, it required the user to manually enter 

coordinates for a rectangular area of interest.  The algorithms were combined making memory 

management more efficient and removing this step. 

 

We simplified the object isolation algorithm, removing several unnecessary image 

manipulation commands, and changing its output to the binary mask.  The binary mask was more 

useful than boundary coordinates because it facilitated the matrix operations which we conducted in 

subsequent subroutines. 
 

F ILT RAT IO N AND DO WNSAMPL ING  

The original stiffness algorithm utilized a series of for loops which divided the rectangular 

area of interest into a series of blocks, and took the average of each block for future calculations.  

We simplified this process by incorporating the convolution and downsampling algorithms, which 

use more matrix operations and fewer “for” loops. This achieved a similar result while reducing the 

execution time. 
 

ST IFF NESS V S .  ST R AIN CAL CULAT IO N  

Multiple changes were made to the stiffness vs. strain algorithm, and these changes greatly 

increased the speed.  First of all, minor changes were made throughout the algorithm optimize 

memory assignments (i.e. new variables were assigned only when necessary, etc.).  Originally, the 

algorithm read the ultrasound movie from the computer’s hard drive one frame at a time.  Hard 

drive reading is slow and should be done as little as possible, so instead of having the algorithm 

perform as many hard drive reads as there are movie frames, a change was implemented so that the 

algorithm read the hard drive only once, reading the entire movie into RAM memory at one time.   

 

Another important improvement was the removal of extraneous for loops and replacing 

them with MATLAB functions optimized the specific purpose that the loop was used for. This 

significantly reduced processing time (Appendix 5).  

 

RESULTS  

HARDWARE  
The source code provided by Texas Instruments was combined to build an Ethernet 

interface program. Code Composer Studio was used to compile the program and convert it to 

machine code. The program can be loaded onto the chip using the USB interface drivers associated 

with Code Composer Studio. Currently, the program can perform the basic function of decoding a 

video file and transferring it to the chip frame by frame. There is also a user interface program that 

allows one to set a limited number of parameters such as the file name and codec.  
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A DSP chip better suited for the project was requested and received from Texas 

Instruments. The new chip is a TMS320C6455-1200 and has 1200 MHz processing power and 2 

Mb on chip cache memory. Its development board has 256 Mb RAM and 8 MB flash memory. The 

new chip is intended specifically for image processing and is set up to return data to the computer.  
 

MAPPING  

The mapping feature, overlaying the stiffness vs. strain distribution onto one of the frames 

was added to the algorithm. This allowed for better readability of results. 

 

PROCESSING  
Testing was performed on both the original algorithms and on our finished algorithm. A 

data set with 434x532 pixels per frame and 5 was used. The implemented changes to the algorithm 

caused it to execute significantly faster and generate only marginal data deviations (an average of 

±5.9% intensity variation per pixel) from the original algorithms (the formulae used to calculate the 

percent intensity variation per pixel are included in Appendix 2).   

 

The clipping part of our algorithm was tested against the original clipping algorithm 

separately from the stiffness vs. strain portion.  Not only did our algorithm clip out the same region 

of interest as the original when given a specific seed point, but it also executed much faster (see 

Figure 7). 

 

 
Figure 7.  Run time of the clipping algorithm tested on a Dell Inspiron Desktop Computer (2.31 GHz Dual -Core AMD 

Processor).  For a small data set, (434x532 pixels by 5 frames), the revised clipping algorithm executed 

significantly faster than the original while st ill returning results identical to that of the original.  
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The stiffness vs. strain part of our algorithm was also tested against the original stiffness vs. 

strain algorithm separately from the clipping portion.  Significant reduction in execution time was 

observed (see Figure 8) with an average data deviation of ±5.9% intensity variation per pixel.  Since 

this deviation is small, it is acceptable due to the time savings.  The reason for the deviation is 

discussed in the future work.  

 

 
FIGURE 8.   Run-time for the revised stiffness vs. strain algorithm vs. original stiffness vs. strain algorithm.  
These times were recorded for a small data set (434x532 pixels by 5 frames) on a Dell Inspiron Desktop 

Computer (2.31 GHz Dual-Core AMD Processor).   

 

 We also compared the performance of the stiffness vs. strain portion of the two algorithms 

with a larger data set, 434x532 pixels by 30 frames. The original algorithm failed to process the 

data set, returning a matrix of zeros. The revised algorithm took 13.59 seconds yielding predicted 

results. 

 

Combining these two algorithms allowed even further revision to be made so that the end 

result was an even faster algorithm that performed both clipping and the stiffness vs. strain analysis.  

This revision consisted mostly of making the memory usage more efficient.  The execution time of 

this algorithm was compared against the original and, as one would predict, ours afforded excellent 

time savings with only minimal data deviation (see Figure 9). 
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Figure 9.   Sum of run-times for the original two algorithms vs.the run time for the revised algorithm.  
These times were recorded for a small data set (434*532 pixels by 5 frames) on a Dell Inspiron Desktop 

Computer (2.31 GHz Dual-Core AMD Processor).   

 
FUTURE WORK  

The stiffness vs. strain algorithm is currently written in MATLAB. It will need to be 

converted to C so that the Code Composer Studio can further convert it to machine code so that it 

can be run on the DSP chip. This can be done by either rewriting the algorithm by hand or using a 

specialized program such as the Embedded IDE Link CC addition to Simulink. Additionally, 

changes should be made to the interface program to enable it to load multiple frames 

simultaneously to the chip. This would reduce the number of hard drive reads, reducing the 

execution time.  

 

The user interface program will need to be expanded to allow processing parameters, such 

as the seed point for the clipping algorithms and filter levels, to be set. The stiffness vs. strain 

algorithm will need to be adjusted to process the dataset one image at a time and receive input 

parameters. The former also means that effective temporary storage of processed data will need to 

be set up. 

 

 Besides adjusting the algorithm to run on the chip and converting it to C, the algorithm must 

continue to be revised.  A three dimensional array can be used to further improve the efficiency. 

This can be achieved by indexing all data by frame number, x-coordinate, and y-coordinate on the 

image. The current method uses 2-dimensional arrays (indexing all data by frame number and pixel 

number), which requires several for loops which would be unnecessary with 3-dimensional arrays.  

Additionally, the small deviation from the original algorithm in the output must be reduced.  This is 

probably due to edge effects that are occurring with the convolution function as this function 

averages values that are inside the region of interest with values that are outside of the region of 
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interest.  Some modification to the code must be made to correct for this.  Finally, more robust 

filters should be incorporated into the algorithm to further reduce noise in the data. 

CONCLUSION  
In conclusion, ultrasound data is currently underutilized; it currently provides information 

on tissue structure, but with additional processing, it can yield information on tissue material 

properties, specifically, the change in a tissue’s stiffness as it is strained.  This information will be 

valuable for physicians and researchers, as it can identify damaged locations in a tendon or other 

tissue. The final goal of this project is to implement a program on a DSP chip which will conduct 

this processing on a 60-frame 700×700-pixel ultrasound video in under 5 minutes.  This semester, 

we acquired an algorithm from Dr. Vanderby and Dr. Kobayashi, which calculates a tissue’s 

stiffness vs. strain, and reduced its processing time by 87% while introducing a 5.9% difference in 

the final pixel calculations.  We also modified it so that it allows a user to select an area of interest, 

and overlays a color-coded image of the stiffness change distribution onto a frame of the ultrasound 

video. Additionally, we set up an interface between a computer and a DSP chip, which can be 

modified in future semesters to manage data flow between these two devices.  

Future work will include reducing the percent difference between the algorithm output and 

the original algorithm’s output, transcoding the algorithm from MATLAB into C, and expanding 

the interface to send multiple ultrasound video frames simultaneously to the chip. Also, the 

interface will need to be expanded to send parameters (such as the image isolation seed point), to 

the chip. 

Thus, though the device is not ready for clinical applications, the algorithms have been 

significantly improved, and can now be more effectively used for research.  
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APPENDICES  

  

APPENDIX 1—ORIGINAL CLIPPING ALGORITHM  
 

The following code was provided by our client and is written in MATLAB.  This code clips out an 

area of interest from a single picture.  Note that all text colored green is a comment and is not 

executed by the computer.  

 
function [boundaryPixel, finalImage, lFamily, time] = EdgeDetection(imIn, dob) 
% This function is used to detect the edge of the possible tumor, ligament, 
% or tendon. The user needs to specify the file name of the image, and the 
% X and Y of the starting pixel. 
% Written by: Mon-Ju Wu 

  

% imIn: The file name of the image file. 
% dob: This is used to tell if the target image is darker or brighter than 
% its surrounding areas. If the target is brighter than the surrounding 
% area, enter "1". Otherwise, enter "0". 
% boundaryPixel: The matrix which list the [row, column] of all the 
% boundary pixels. 
% finalImage: The final image. 
% lFamily: The total number of pixels in the target regions. 

  

% Read in the image. Check if the images are in gray scale. If not, turn 
% them into gray scale. Also, scale the image to 8-bit image. 
% image: The read-in image (in 8-bit gray scale). 
% iRow: The number of rows of the image. 
% iColumn: The number of columns of the image. 
% maxImage: The max intensity of the image. 
% brightness: The variable used to tell if the target image is darker or 
% brighter than its surrounding areas. It takes the value from "dob". 
 % RGB = imread(imIn); % Read in the image in RGB format 
  RGB=imIn;  %%matrix input for testing 
  HSI = rgb2hsv(RGB); % Convert the image from RGB format to HSI format. 
  image = HSI(:,:,3); % Pass the intensity matrix of the image to "image"  
  [iRow, iColumn] = size(image); 
  maxImage = max(max(image)); 
  image = image*double(1/maxImage); % Re-adjust the max intensity value to make 

sure the intensity falls between 0 and 1. 
  brightness = dob; 
  % If the target image is darker than its surrounding area, take the 
  % inverse intensity value of the image so that the target image would 
  % look brighter than surrounding areas. 
  if brightness==0 
      image = 1 - image; 
  end 
  imshow(image);          % Plot the image. 

   

  

% inOut: A matrix (with the same size as the image) used to keep in track 
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% if a pixel is processed. It is initiated as zero. If a pixel processed, 
% its corresponding pixels in "inOut" becomes 1. 
% outImage: A mtrix (with the same size as the image) used to keep in track 
% which pixels belong to the specified region. It is initiated as zero. If 
% a pixel is considered as part of the region, its borresponding pixel in 
% "outImage" becomes 1. 
% eMask: A 3x3 matrix used to perform erosion. 
% family: A matrix which used to keep in track the boundary pixels of the 
% region. It is initiated with the boundary of the starting pixel 
% (indicated by user) and its surrounding 7*7 matrix. It is in the format 
% of [row, column]. 
% X: The column number of the starting pixel. 
% Y: The row number of the starting pixel. 
% bRow: The rows of the boundary pixels. 
% bCol: The columns of the boundary pixels. 
  inOut = zeros(size(image)); 
  outImage = zeros(size(image)); 
  beginColumn=229; 
  beginRow = 129;          %get rid of ginput command for testing purposes % Use 

the command "ginput" to let the user select the starting point with cursor. 
  inOut(beginRow-3:beginRow+3,beginColumn-3:beginColumn+3) = 1;          % Set 

the 7*7 matrix centered at the starting point as processed. 
  outImage(beginRow-3:beginRow+3,beginColumn-3:beginColumn+3) = 1;       % Set 

the 7*7 matrix centered at the starting point as part of the target region. 
  eMask = ones(3,3); 
  boundaryImage = outImage - imerode(outImage, eMask);          % Extract the 

boundary of the target region. 
  [bRow bCol] = find(boundaryImage);          % Find the pixel location of the 

boundary. 
  family = [bRow bCol]; 

  

  

% Start the loop to add pixels into "outImage".  
% pSize: Previous number of pixels of the region in "outImage". 
% cSize: Current number of pixels of the region in "outImage". 
% pixelIndex: The list of the pixel number that's within the region. 
% family: The  
% fRow: The number of rows of the "family". 
% fCol: The number of columns of the "family". 
% fAverage: The previous average intensity of region. It is initialized as 
% the average intensity of the first 7x7 matrix. 
% average: The current average intensity of region. 
  iRun = 0; 
  pSize = 0; 
  cSize = 0; 
  while iRun<2 
      if iRun==0 
          pSize = 1; 
          iRun = iRun + 1; 
          average = sum(sum(image(beginRow-3:beginRow+3,beginColumn-

3:beginColumn+3)))/49;          % Calculate the average intensity of the target 

region. 
      end 
      % Find the total number of pixels within the region. 



TI DSP Project: Final Report 

Page 23 

 

 

      outImage = imfill(outImage, 'hole');          % Use the command "imfill" 

to turn every pixel within the region into part of target region. 
      pixelIndex = find(outImage);          % Find every pixel location of the 

target region. 
      cSize = length(pixelIndex);           % Calculate the totla number of 

pixels (belong to the region). 
      % Find the boundary pixels of the region. 
      boundaryImage = outImage - imerode(outImage, eMask);          % Calculate 

the boundary. 
      [bRow bCol] = find(boundaryImage); 
      family = [bRow bCol];          % Create the "family" matrix as which 

record the locations of the boundary pixel. 
      [fRow fCol] = size(family); 
      if cSize==pSize          % If the size of target region doesn't change 

anymore, that means it probably already  
          break                % hits the pixel whose intensity is sharply less 

the average intensity of the target  
      else                     % region. That means it probablyhtis the 

boundary. In this case, the the loop stops. 
          fAverage = average; 
          % Calcaulate the average intensity of the family. 
          average = 0; 
          for z=1:cSize 
              if (image(pixelIndex(z))-fAverage)>0.1 
                  average = average + fAverage; 
              else 
                  average = average + image(pixelIndex(z)); 
              end 
          end 
          average = average/cSize; 
          % Caculate the intensity of the neighboring pixel. If it falls 
          % within the threshold, add it to the target region. Afterwards, 
          % mark the pixel as processed (no matter if it's in the target 
          % region or not). 
          for i=1:fRow 
              pSize = cSize; 
              for p=family(i,1)-1:family(i,1)+1 
                  for q=family(i,2)-1:family(i,2)+1 
                      if (p>1)&&(p<iRow)&&(q>1)&&(q<iColumn) 
                          if inOut(p,q)==0 
                              inOut(p,q) = 1;          % Mark the pixel as 

processed. 
                              sumNeighbor = 0; 
                              tempMask = zeros(3,3); 
                              % Calculate the intensity of the neighboring 
                              % pixel. 
                              for m=p-1:p+1 
                                  for n=q-1:q+1 
                                      if image(m,n)-fAverage>0.02  
                                          tempMask(m,n) = fAverage; 
                                      else 
                                          tempMask(m,n) = image(m,n); 
                                      end 
                                  end 
                              end 
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                              sumNeighbor = sumNeighbor + sum(sum(tempMask)); 
                              if (fAverage-image(p,q)<0.13)&&(fAverage-

(sumNeighbor/9)<0.05) 
                                  outImage(p,q) = 1;          % Mark the pixel 

as processed. 
                              end 
                          end 
                      end 
                  end 
              end 
          end 
      end 
  end 

   

   

% Create a 3x3 mask to perform erosion on "inOut" to extract the boundary 
% of the image. 
% eMask: A 3x3 matrix used to perform erosion. 
% boundaryImage: The output image boundary. 
% boundaryPixel: A n*2 matrix which lists all the boundary pixels. 
% finalImage: The final image which is composed of the original image with 
% the detected boundary. 
  outImage = imfill(outImage, 'hole');          % Use the command "imfill" to 

turn every pixel within the region into part of target region. 
  boundaryImage = outImage - imerode(outImage, eMask);          % Extract the 

boundary of the target region. 
  % If the image is inversed, convert it back. 
  if brightness==0 
      image = 1 - image; 
  end 
  finalImage = image; 
  [tempRow tempCol] = find(boundaryImage);          % Find the pixel location of 

the boundary. 
  boundaryPixel = [tempRow tempCol];          % Create the "boundaryPixel" 

matrix as which record the locations of the boundary pixel. 
  [bpRow bpCol] = size(boundaryPixel);          % Get the size of the 

"boundaryPixel". 
  for s=1:bpRow 
      finalImage(boundaryPixel(s,1), boundaryPixel(s,2)) = 1; 
  end 
  imshow(finalImage) 
  lFamily = length(find(outImage)) 
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APPENDIX 2—ORIGINAL STIFFNESS VS .  STRAIN ALGORITHM  
 

The following code was provided by our client and is written in MATLAB.  This code calculates 

the stiffness vs. strain distribution for a user-defined rectangular area in each frame of an ultrasound 

video.  Note that all text in green is a comment and is not executable code.  A few lines of code had 

to be modified to resolve various compiler errors; these lines are marked with the comment 
%modification necessary here for code to execute.  
 
% avi2d06d.m 
% H. Kobayahsi 
% 06_15_08 
% This m file will import AVI format file (infile) into Matlab and freeze each 

frame and convert 
% into color_echo map. Finally combine all images into one animation AVI 
% file and output (outfile).  
% Segment chosen block into multiple blocks in HORIZONTAL direction complare  
% combination of avi_h01 and avi_slope01 to evalaute regional slope 
% destribution 
% automated version of avi2d01.m 
% adopting avi2d05 format 

  

infile=input(' INPUT_File name ?','s') 

  

amp=input('amplification? ')' 

  

mov=aviread(infile); 
[dummy,FrameNum]=size(mov); 
loc=[-60,-60,0,0]; 
 dmov=aviread(infile,25);  % frame number that filter is set up off of has been 

changed to be appropriate for testing purposes from frame 60 to frame 25 
 [X,Map] = frame2im(dmov) ; 
 HSI = rgb2hsv(X);  %modification necessary here for code to execute 
 %H = HSI(:,:,1);   
 %S = HSI(:,:,2);   
 I = HSI(:,:,3);  %modification necessary here for code to execute 

  

 I=double(I)*amp;  %modification necessary here for code to execute 

  

 I_max=max(max(I)); 

  

 FI=flipdim(I,1)/I_max; 

  
 [nraw,ncol]=size(FI); 

  

contour(FI(1:nraw-50,:),30); 
 grid 

  

 FrameNum 

  

 % evaluation of mea echo in ROI 
 checker=input(' Define range of ROI YES(1) NO(0)'); 
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  xstart_ROI=input('x_START'); 
  xend_ROI=input('x_END'); 
  ystart_ROI=input('y_START'); 
  yend_ROI=input('y_END'); 

  

  sum=0.0; 
  pixel_count=0; 
  for ix=xstart_ROI:xend_ROI 
     for jy=ystart_ROI:yend_ROI 
         sum=sum+FI(ix,jy);  
         pixel_count=pixel_count+1; 
     end 
  end 

   

  MEAN_ROI=sum/pixel_count 
  Proc_range=input('% range of process magnitude range ')/100; 
  up_bound=MEAN_ROI*(1+Proc_range); 
  lw_bound=MEAN_ROI*(1-Proc_range); 

   

checker=input(' Define range of viewing area YES(1) NO(0)'); 

  

  

  

if checker == 1 

   

  xstart_total=input('x_START'); 
  xend_total=input('x_END'); 
  total_point_V=xend_total-xstart_total 
  nlayer=input('Number layers in V-direction? '); 
  ystart0=input('y_START'); 
  yend0=input('y_END'); 
  total_point_H=yend0-ystart0 
  iblock=input(' Number of lbocks in H-drecrtion = '); 

   

  vblock=nlayer; 
  v_width= round((xend_total- xstart_total)/nlayer); 
end  

  

  

start_frame=input('starting frame nummber ?') 
end_frame=input('ending frame number ?') 

  

  

xstart0=xstart_total; 
xend0=xstart0+v_width; 
for nl=1:nlayer 

     

Layer_Number=nl 

  

% Checking the condition of block number 
checkb=ceil((yend0-ystart0)/iblock)-floor((yend0-ystart0)/iblock); 
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% corrected block number 
nblock=checkb+iblock; 
% evlaaution of block width 
blockw=floor((yend0-ystart0)/iblock); 
% block width of final blcok 
if checkb == 1 
flockw=yend0-(iblock*blockw+ystart0); 
else 
flockw=blockw; 
end 
%FrameNum=1; 

  

for i=1:FrameNum 
   %Frame_number=i  
       dmov=aviread(infile,i); 
       [X,Map] = frame2im(dmov); 
       HSI = rgb2hsv(X);%modification necessary here for code to execute 
       %H = HSI(:,:,1);   
       %S = HSI(:,:,2);   

       I = HSI(:,:,3);  %modification necessary here for code to execute 

         
       I=double(I)*amp;  %modification necessary here for code to execute 

        

       I_max=max(max(I)); 

        

       FI=flipdim(I,1)/I_max; 

  

    % block loop    
    ystart=ystart0; 
    yend=yend0; 
    for nb=1:nblock 
      %block_numner=nb 
       if nb <= nblock-1 
           width=blockw; 
       else 
           width=flockw; 
       end 

          

         ystart; 
         yend=ystart+width; 

          

         %checkpt=input(' ystart and yend looks OK? '); 

          

        if checker ==1 
          SI=FI(xstart0:xend0,ystart:yend); 
        else 
          SI=FI; 
        end 
        [nrow, ncol]=size(SI); 

  

        ncount=1; 
        sum=0.0; 
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        for j=1:nrow 
            for k=1:ncol 
                temp=SI(j,k); 

                 

                % suppressing loop 
                if temp > up_bound; 
                    temp=temp*0.01; 
                end 

                 

                %if temp < lw_bound; 
                %    temp=temp*0.01; 
                %end 

                 

                % summation loop  
                if temp > 0.05 
                sum=sum+temp; 
                ncount=ncount+1; 
                end 
            end 
        end 
        temp=sum/ncount; 
        msi(i,nb)=temp; 
        %contourf(SI); 
        %check=input('checker ? '); 
        %F=getframe(gcf);   
        %aviobj = addframe(aviobj,F);   
        ystart=width+ystart; 
    end     

   

end 

  

%aviobj = close(aviobj); 

  

for nb=1:nblock 

    

   base=((1+msi(1,nb)))^2/((1-msi(1,nb)))^2; 
   for i=1:FrameNum 

   

      top=((1+msi(i,nb)))^2/((1-msi(i,nb)))^2; 
      nstiff(i,nb)=top/base; 

   

   end 
end 

  

% contouring nstiff_frame  
% contourf(nstiff,20) 
%checker=input('Contour OK ?'); 
%plot(nstiff) 
%checker=input(' Stiff_Frame plot OK ?'); 
% slope evalaution  
%start_frame=1; 
%end_frame=20; 
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for nb=1:nblock 
   for i=start_frame:end_frame 
       y_value=nstiff(i,nb); 
       x_value=i*0.01;  
       mtx(i,1)=x_value; 
       mtx(i,2)=1; 
       vec(i)=y_value; 
   end 
   MX=mtx'*mtx; 
   VC=mtx'*vec'; 
   sol=inv(MX)*VC; 

    

   slp(nl,nb)=sol(1); 
   tg(nl,nb)=sol(2);    
end 

  

xstart0=xend0; 
xend0=xstart0+v_width; 
end 
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APPENDIX 3—REVISED AND COMBINED ALGORITHM  
 

This is the final copy of our algorithm that combines both the clipping and stiffness vs. strain 

algorithms.  Significant revisions were also made to both algorithms to facilitate combining them 

and to allow them to execute faster. 
%Main Ultrasound Stiffness Analysis File 
%Version 1.4 
%Last Edited by Jonathan Meyer 
%Authors: Bogdan Dzyubak, Joe Helfenberger, Matthew Parlato, and Jonathan %Meyer 
% Based on source code from Dr. Hirhito Kobayashi and Mon-Ju Wu 
%This code calls a variety of subroutenes to determine the changes in 
% stiffness in a tendon or ligament under a constant strain rate. 
clear all; close all; clc; 
%% Step 1: Load an avi and normalize it 
infile=input('Enter the file path of the file to analyze: ','s'); 
mov=aviread(infile); 
FrameNum=length(mov); % Get the number of frames in the avi 
Images=cell(FrameNum,1); 
for i=1:FrameNum 
    if i==1 
    X = frame2im(mov(i)); 
    indexedGrayImage = double(rgb2gray(X)); 
    intensityGrayImage=indexedGrayImage./255; 
    I_max=max(max(intensityGrayImage)); 
    Images{i}=intensityGrayImage./I_max; 
    finalImage=ind2rgb(indexedGrayImage,colormap(gray(255))); 

     

    else 
       X = frame2im(mov(i)); 
       indexedGrayImage = double(rgb2gray(X)); 
       intensityGrayImage=indexedGrayImage./255; 
       I_max=max(max(intensityGrayImage)); 
       Images{i}=intensityGrayImage./I_max; 
    end 
end 
imageSize=size(Images{1}); 

  

clear X I_max infile indexedGrayImage  
%% Step 2: get area of interest 
% and have the user select the area of interest. 

  

Confirmation=0; 
while Confirmation==0 
    areaOfInterest=ObjectIsolation1(Images{1},1); 
    Confirmation=input('Is the selected area acceptible? (Enter=yes, 0=no) ')'; 
end 

  

  

%% Step 3: Convolve and downsample images 
hblock=input('kernel height: ')'; 
wblock=input('kernel width: ')'; 
kernel=ones(wblock,hblock); 
%Cut out the area of interest 
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[AreaOfInterestRows, 

AreaOfInterestColumns]=find(areaOfInterest);%AreaOfInterestRows is a list of 

%row numbers in which there are non-zero values 
maxRow=max(AreaOfInterestRows); 
maxColumn=max(AreaOfInterestColumns); 
minRow=min(AreaOfInterestRows); 
minColumn=min(AreaOfInterestColumns); 
areaOfInterestHeight=maxRow-minRow; 
areaOfInterestWidth=maxColumn-minColumn; 

  

downsampledImage=cell(FrameNum,1); 
for i=1:FrameNum; % Crop the area of interest, and then filter and downsample it 
    %Downsample the area of interest 
    if i==1 %only the first downsampled image needs to be multiplied by the   

% areaOfInterest 
        

downsampledImage{i}=downsample(downsample(conv2(Images{i}(minRow:maxRow,minColum

n:maxColumn),kernel,'same')./9.*areaOfInterest(minRow:maxRow,minColumn:maxColumn

),hblock)',wblock)';  

%This command takes the block containing the areaOfInterest, convolves it, 

isolates the areaOfInterest in it (to allow the pixels of the downsampled area 

of interest to be found later) and downsamples it using the blocks specified by 

the convolution kernel. 
    else %The remaining frames don’t need to be multiplied by the    

         %areaOfInterest 
        

downsampledImage{i}=downsample(downsample(conv2(Images{i}(minRow:maxRow,minColum

n:maxColumn),kernel,'same')./9,hblock)',wblock)';  

%This command does the same thing without multiplying it by the area of 

%interest 
    end 
end 
[downsampledRowNumber,downsampledColumnNumber]=size(downsampledImage{1}); 
clear kernel hblock wblock 

  

disp(num2str(FrameNum)) 
yes=input('Do you want to specify a start and end frame (1=yes, Enter=no)?'); 
if yes==1 
    start_frame=input('starting frame nummber ?'); 
    end_frame=input('ending frame number ?'); 
else 
    start_frame=1; 
    end_frame=FrameNum; 
end 
summation=downsampledImage{25}; 
[up_bound,lw_bound,size_of_summation_matrix]=Filtering(summation); 
%% Actually Reading in the Frames and such 

%% The following two lines allocate memory to the arrays msi and nstiff  
msi=zeros(FrameNum,downsampledRowNumber*downsampledColumnNumber); 
nstiff=msi; 

  

for i=1:FrameNum; 

     

    pixel_counter=1; %This is used in assigning a number to every pixel used %in 

calculation.  This will make later matrix operations easier. 
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    for j=1:downsampledRowNumber; 
        for k=1:downsampledColumnNumber; 
            msi(i,pixel_counter)=downsampledImage{i}(j,k); %msi is a matrix %of 

average pixel values, with framenumbers as rows and block averages as %columns 
            if msi(i,pixel_counter) > up_bound; 
                 msi(i,pixel_counter)=msi(i,pixel_counter)*0.01; 
            end 
                base=((1+msi(1,pixel_counter)))^2/((1-msi(1,pixel_counter)))^2; 

 

            top=((1+msi(i,pixel_counter)))^2/((1-msi(i,pixel_counter)))^2; 

  

            nstiff(i,pixel_counter)=top/base; 

  

            pixel_counter=pixel_counter+1; %here we increment the pixel %count 

by 1 
        end 
    end 
end 

  

%% Carrying out the Calculations for Stiffness vs. Strain 
for p=1:pixel_counter-1; 
    for i=start_frame:end_frame; 
        y_value=nstiff(i,p); 
        x_value=i*0.01; 
        mtx(i,1)=x_value; 
        mtx(i,2)=1; 
        vec(i)=y_value; 
    end 
    MX=mtx'*mtx; 
    VC=mtx'*vec'; 
    sol=inv(MX)*VC; 

  

    slp(p)=sol(1); 
end 
p=0; 
final_answer=zeros(downsampledRowNumber,downsampledColumnNumber); 
for x=1:downsampledRowNumber 
    for y=1:downsampledColumnNumber 
        p=p+1; 
        final_answer(x,y)=slp(p); 
    end 
end 

  

%% create rgb image of manipulated data 
% change everything back to rgb, with the stress vs. Strain image 
% given a different colormap 
clear imageSize 
resizedImage=imresize(final_answer,[areaOfInterestHeight,areaOfInterestWidth]);  
indexedImage=grayslice(resizedImage,255);%convert the intensity image to an 

%indexed image 
rgbMap=colormap(hot(255)); %Set a colormap that isn't grayscale 
rgbImage=ind2rgb(indexedImage,rgbMap); 
%% Add images 
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for x=1:areaOfInterestWidth 
    for y=1:areaOfInterestHeight 
        if areaOfInterest(y+minRow-1,x+minColumn-1)==1 
            finalImage(y+minRow-1,x+minColumn-1,1)=rgbImage(y,x,1); 
            finalImage(y+minRow-1,x+minColumn-1,2)=rgbImage(y,x,2); 
            finalImage(y+minRow-1,x+minColumn-1,3)=rgbImage(y,x,3); 
        end 
    end 
end 
image(finalImage); 

 

 

Two functions that we wrote are called from this main code.  They are called filtering and and 

objectisolation1.  Their code is included here as well for the sake of completeness. 

 

Filtering 
function [up_bound,lw_bound,size_of_summation_matrix]=Filtering(summation) 
total_sum=sum(sum(summation)); 
size_of_summation_matrix=size(summation); 
pixel_count=size_of_summation_matrix(1).*size_of_summation_matrix(2); 
MEAN_ROI=total_sum/pixel_count; 
Proc_range=input('Specify Error Tolerance Percentage')/100; 
up_bound=MEAN_ROI*(1+Proc_range); 
lw_bound=MEAN_ROI*(1-Proc_range); 
end 

 

ObjectIsolation1 
function outImage = ObjectIsolation1(image, brightness) 
% This function is used to detect the edge of the possible tumor, ligament, 
% or tendon. The user needs to specify the file name of the image, and the 
% X and Y of the starting pixel. 
% Written by: Mon-Ju Wu 

% Revised by: Jonathan Meyer 

  

% image: The file name of the image file. 
% brightness: This is used to tell if the target image is darker or brighter % 

than 
% its surrounding areas. If the target is brighter than the surrounding 
% area, enter "1". Otherwise, enter "0". 
% boundaryPixel: The matrix which list the [row, column] of all the 
% boundary pixels. 
% image: The read-in image. 
% iRow: The number of rows of the image. 
% iColumn: The number of columns of the image. 

 

[iRow, iColumn] = size(image); 

   

  % If the target image is darker than its surrounding area, take the 
  % inverse intensity value of the image so that the target image would 
  % look brighter than surrounding areas. 
  if brightness==0 
      image = 1 - image; 
  end 
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  imshow(image);          % Plot the image. 

   

  

% inOut: A matrix (with the same size as the image) used to keep track of    % 

which pixels are processed. It is initiated as zero. If a pixel processed, 
% its corresponding element in inOut becomes 1. 
% outImage: A matrix (with the same size as the image) used to keep track of 
% which pixels belong to the specified region. It is initiated as zero. If 
% a pixel is considered as part of the region, its corresponding pixel in 
% outImage becomes 1. 
% eMask: A 3x3 matrix used to perform erosion. 
% family: A matrix which used to keep track of the boundary pixels of the 
% region. It is initiated with the boundary of the starting pixel 
% (indicated by user) and its surrounding 7*7 matrix. It is in the format 
% of [row, column]. 
% X: The column number of the starting pixel. 
% Y: The row number of the starting pixel. 
% bRow: The rows of the boundary pixels. 
% bCol: The columns of the boundary pixels. 
  inOut = zeros(size(image)); 

  

  [beginColumn, beginRow] = ginput(1);  % Use the command "ginput" to let the 

%user select the starting point with cursor. 
  inOut(beginRow-3:beginRow+3,beginColumn-3:beginColumn+3) = 1;              % 

Set the 7*7 matrix centered at the starting point as processed. 
  outImage = inOut;       % Set the 7*7 matrix centered at the starting point 

%as part of the target region. 
  eMask = ones(3,3); 

  

% Start the loop to add pixels into "outImage".  
% pSize: Previous number of pixels of the region in "outImage". 
% cSize: Current number of pixels of the region in "outImage". 
% pixelIndex: The indices of the pixels within the region. 
% fRow: The number of rows of the "family". 
% fCol: The number of columns of the "family". 
% fAverage: The previous average intensity of the region. It is initialized  % 

as the average intensity of the first 7x7 matrix. 
% average: The current average intensity of region. 
  iRun = 0; 
  pSize = 0; 
  cSize = 0; 
  while iRun<2 
      if iRun==0 
          pSize = 1; 
          iRun = iRun + 1; 
          fAverage = sum(sum(image(beginRow-3:beginRow+3,beginColumn-

3:beginColumn+3)))/49;% Calculate the average intensity of the target region. 
      end 
      % Find the total number of pixels within the region. 
      pixelIndex = find(outImage);% Find every pixel location of the target region. 
      cSize = length(pixelIndex); % Calculate the total number of pixels     

%that belong to the region. 
      % Find the boundary pixels of the region. 
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      boundaryImage = outImage - imerode(outImage, eMask); % Calculate the 

%boundary. 
      [bRow bCol] = find(boundaryImage); 
      family = [bRow bCol]; % Create the "family" matrix which records the 

%locations of the boundary pixel. 
      fRow=length(bRow); 
      if cSize==pSize % If the size of target region doesn't change anymore, 

%that means it probably already hits the pixel whose intensity is sharply %less 

the average intensity of the target region. That means it probably is %the 

boundary. In this case, the loop stops.   
          break  
      else                      

          

          % Calcaulate the average intensity of the family. 
          average = 0; 
          for z=1:cSize 
              if (image(pixelIndex(z))-fAverage)>0.1 
                  average = average + fAverage; 
              else 
                  average = average + image(pixelIndex(z)); 
              end 
          end 
          % Caculate the intensity of the neighboring pixel. If it falls 
          % within the threshold, add it to the target region. Afterwards, 
          % mark the pixel as processed (no matter if it's in the target 
          % region or not). 
          for i=1:fRow 
              pSize = cSize; 
              for p=family(i,1)-1:family(i,1)+1 
                  for q=family(i,2)-1:family(i,2)+1 
                      if (p>1)&&(p<iRow)&&(q>1)&&(q<iColumn) 
                          if inOut(p,q)==0 
                              inOut(p,q) = 1; % Mark the pixel as processed. 
                              sumNeighbor = 0; 
                              tempMask = zeros(3,3); 
                              % Calculate the intensity of the neighboring 
                              % pixel. 
                              for m=p-1:p+1 
                                  for n=q-1:q+1 
                                      if image(m,n)-fAverage>0.02  
                                          tempMask(m,n) = fAverage; 
                                      else 
                                          tempMask(m,n) = image(m,n); 
                                      end 
                                  end 
                              end 
                              sumNeighbor = sumNeighbor + sum(sum(tempMask)); 
                              if (fAverage-image(p,q)<0.13)&&(fAverage-

(sumNeighbor/9)<0.05) 
                                  outImage(p,q) = 1; % Mark the pixel as 

%processed. 
                              end 
                          end 
                      end 
                  end 
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              end 
          end 
      end 
  end 

   

   

% Create a 3x3 mask to perform erosion on inOut to extract the boundary 
% of the image. 
% eMask: A 3x3 matrix used to perform erosion. 
% boundaryImage: The output image boundary. 
% boundaryPixel: A n*2 matrix which lists all the boundary pixels. 
boundaryImage = outImage - imerode(outImage, eMask);% Extract the boundary of 

%the target region. 
  % If the image is inversed, convert it back. 
  if brightness==0 
      image = 1 - image; 
  end 
  [tempRow tempCol] = find(boundaryImage); % Find the pixel location of the 

%boundary. 
  boundaryPixel = [tempRow tempCol];% Create the boundaryPixel matrix as %which 

record the locations of the boundary pixel. 
  [bpRow bpCol] = size(boundaryPixel);% Get the size of the boundaryPixel. 
  for s=1:bpRow 
      image(boundaryPixel(s,1), boundaryPixel(s,2)) = 1; 
  end 

  

imshow(image); 
end 
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APPENDIX 4—CALCULATIONS AND EQUATIONS 

 

Stiffness vs. Strain Calculation 

The method used to find the slope of the stiffness vs. strain curve simply solves a linear system that 

is set up like this for a slope and y-intercept value: 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑝𝑖𝑥𝑒𝑙 =  
𝑠𝑙𝑜𝑝𝑒

𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
 ∗ 𝑠𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎 

Stiffnesspixel, an 𝑛 × 1 matrix, is the stiffness data for the pixel or block in question for every frame.  

As strain is assumed to be constant throughout the video, the strain at any point can be thought of as 

a proportional to the frame in question.  Since an ultrasound machine operates at a set frame rate, 

the passage of time can be found by the number of frames that have been viewed.  Using this logic, 

the following relation becomes clear: 

∆𝑠𝑡𝑟𝑎𝑖𝑛 ≈ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑎𝑡𝑒 = 𝐶 
 

𝑠𝑡𝑟𝑎𝑖𝑛 = 𝐶 ∗ ∆𝑡𝑖𝑚𝑒;  ∆𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 𝑒𝑙𝑙𝑎𝑝𝑠𝑒𝑑 
 

𝑬𝒔𝒔𝒆𝒏𝒕𝒊𝒂𝒍𝒍𝒚: 𝑠𝑡𝑟𝑎𝑖𝑛 ~ ∆𝑡𝑖𝑚𝑒  
 

∆𝑡𝑖𝑚𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 
 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆: 𝑠𝑡𝑟𝑎𝑖𝑛 ~ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 
 

This relation indicates that strain is directly proportional to the passage of time, and, alternatively, 

the number of the frame in question multiplied by the frame rate is inidicative of the amount strain 

that has occurred.  Therefore, the client’s algorithm and our algorithm used the following formula 

to calculate the strain data for a video that is “n” frames long.  The value of 0.01 is the frame rate of 

the client’s ultrasound machine.  The right-hand column containing all ones is included so that 

when the matrix containing slope and y-intercept is multiplied by this matrix, y-intercept is added to 

the final value. 

𝑆𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎 =  

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

  

 

As this is a linear system, one can see that simple algebra can be used to find any unknowns.  A 

system, for an ultrasound video that is “n” frames long, is set up like this:   

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑝𝑖𝑥𝑒𝑙 =  
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 1

⋮
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 𝑛

 =  
𝑠𝑙𝑜𝑝𝑒

𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
 ∗  

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

  

 

The rules of fundamental algebra still apply, so to solve for the unknowns one must rearrange the 

equation to get the slope and y-intercept variables by themselves on one side of the equation.  This 

can be done like this: 
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𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 1

⋮
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 𝑛

 ∗  

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

 

−1

=   
𝑠𝑙𝑜𝑝𝑒

𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
  

A problem occurs here, however, since the matrix dimensions of the stiffness matrix (an 𝑛 × 1 

matrix), the strain data matrix (an 𝑛 × 2 matrix), and the slope and y-intercept matrix (a 2 × 1 

matrix) do not agree.  Therefore, a common matrix technique must be applied to get the dimensions 

to agree so that this operation can be carried out.  This technique is carried out as follows: 

 

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

 

𝑇

=  
1 … 1

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 …  𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01
  

 

 

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

 ∗  

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

 

𝑇

= 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 2 × 2 

 

So now one can see that a matrix of finite size will be obtained.  If this transform is applied to side 

of the equation, then it must be applied to the other side, as well (fundamental rules of algebra). 

 

 

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

 

𝑇

∗  
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 1

⋮
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 𝑛

 = 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 2 × 1 

 

Once again, a matrix of finite dimensions results from this operation.  Also, one can now see that 

the matrix dimension problems are now no longer an issue: 

 

(2 × 2)−1 ∗  2 × 1 = (2 × 1) 

 

After applying this transform and rearranging the equation so that the unknowns slope and y-

intercept can be found, one obtains this formula: 

 

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

 

𝑇

∗  
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 1

⋮
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 𝑛

 = 𝐴 

 
 
 
 

 

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

 ∗  

 𝑓𝑟𝑎𝑚𝑒 1 ∗ 0.01 1
 𝑓𝑟𝑎𝑚𝑒 2 ∗ 0.01 1

⋮ ⋮
 𝑓𝑟𝑎𝑚𝑒 𝑛 ∗ 0.01 1

 

𝑇

 
 
 
 
−1

= 𝐵 
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𝐴 ∗ 𝐵 =   
𝑠𝑙𝑜𝑝𝑒

𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
  

 

This formula is used on every pixel or block in the original algorithm and in our algorithm.  

 

Data Deviation Calculation 

To determine if the data sets produced by the original algorithm and our algorithm were the same, 

some type of comparison had to be performed.  We found the average percent difference of the 

pixels of our results vs. the original results by the following formula: 

 

𝑎𝑣𝑔𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑐𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

 
 𝑝𝑖 − 𝑙𝑖 
𝑝𝑖 + 𝑙𝑖

2

𝑛=# 𝑜𝑓  𝑝𝑖𝑥𝑒𝑙𝑠
𝑖=1

𝑛
 

 

Where p=our results and l=original results 
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APPENDIX 5—PRODUCT DESIGN SPECIFICATIONS  
Date: December 12, 2008  

 

Clients: Dr. Ray Vanderby, Dr. Hirohito Kobayashi, and Texas Instruments  

 

Advisors: Dr. Tom Yen and Dr. Walter Block  

 

Function: Texas Instruments (TI) is interested in finding applications in the medical field for their 

Digital Signal Processing Chips (DSP’s). DSP’s specialize in simple mathematical calculations and are 

able to collect information and process it in real-time (unlike other common micro-processors). The 

guidelines for this project are that a TI DSP chip be used and that the final product solves a meaningful 

medical problem. We have chosen to apply the DSP chip in the field of medical imaging, where it 

would function as a part of a portable ultrasound medical imaging system that would identify and 

analyze stiffness distribution in tissues on-the-fly. Though significant work can be done on such a 

project, we have decided on three goals that we would like our device to satisfy:  

 

1. Implement an algorithm that processes stiffness vs. strain in tissues using stored data  

 

2. Optimize this algorithm for near-real time processing  

 

3.  Execute this algorithm from a DSP chip  

 

In the future, this device could be used for surgical or clinical diagnostic purposes. However, currently 

our client just requires a device that can quickly process this data for research purposes.  

 

Client Requirements:  
 

Device that processes data quickly: The performance that the client requires from this device is 

that it must be able to process 434 x 532 pixels in 30 frames of ultrasound video data in less than 5 

minutes.  As this is a research device, immediate feedback after data gathering is not necessary, but it is 

helpful.  Also, as this device could one day be used in a clinical setting, this standard of 30 frames in 

less than 5 minutes should be upheld.    

 

A TI C6000 High Performance DSP Chip model ******* will be used.  As this chip will take some 

time to arrive, for this semester, Dr. Yen has made available a TMS320DM6437 DaVinci DSP chip.  

Though not ideal for the type of processing we wish to do, it should serve as an excellent template to get 

started from.   

 

Interface 

The interface should be relatively easy to use, as any person in the medical field (someone not 

necessarily well versed in DSP technology) should be able to effectively use it. Currently, the interface 

is very straightforward as user input is limited to selecting the area of interest, specifying whether it is 

darker or lighter than the surrounding tissues, and choosing the size of the kernels that the convolution 

algorithm uses. 
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 Compatability 

The device must be compatible with the client’s computer as it will be interfacing with it for data 

storage and display purposes.  Also, as this device may one day be used in a clinical setting, it must 

be compatible with most common computer platforms as it is likely that a computer will still act as 

this chip’s display and storage device. 

 
Design Requirements: As this device will primarily be used by the client to process ultrasound 

data being used in research, the device design has only a few constraints. It must be able to 

effectively identify tissues and analyze their properties in a matter of minutes, and it must have an 

effective interface that an expert in this field can easily use.  The device must be able to interface 

with a computer as the ultrasound data will be stored and displayed on the computer. The size of the 

device should be convenient and weigh less than 10 lb. In the future, it is possible that the device 

may be used for clinical diagnosis or as a surgical tool, so the detector end should not be damaged 

by sterilization.  

 

Physical and Operational Characteristics  

a. Performance requirements: The ultimate goal of this device is to process data in a matter of 

minutes and send the processed data to an output and storage device (most likely a computer). It 

should be able to consistently identify tissues and analyze their distribution of stiffness change for a 

given strain rate. The device will initially be used for research purposes, perhaps once a day. The 

system needs to be portable - including a weight of less than 10 lb, a size smaller than 1 cubic foot, 

and should run, or have the capability to run, on battery power. Because the device may eventually 

be used in surgery or clinical diagnosis, the probe must not be damaged by sterilization. 

 

This device must also perform its duties very quickly (on the order of processing 30 frames of 434 x 

532 pixels in under 5 minutes).  Precautions also need to be taken so that the chip does not run out 

of memory, as its limited RAM may fill up quickly during the course of the data processing.  

Another requirement is that it must be compatible with the client’s computer (or any common 

computer platform, for that matter) as a computer will act as the primary data storage and display 

device.  It is likely that the user would also use the computer to pass any necessary user inputs to 

the chip.   

 

b. Safety: Ultrasound imaging has no known negative effects. If the device is used in surgical 

settings, the probe must be sterilized between uses.    

 

c. Accuracy and Reliability: The device must be able to calculate stiffness vs. strain distributions 

in ultrasound video images accurately. It should be able to provide information about loading and 

damage of tissues. The techniques for the latter purpose are in the research stage, so final accuracy 

of the device is difficult to predict at this time. 

 

This device also needs to be able to handle large data sets without running into data storage issues.  

Another requirement is that the device must be able to interface smoothly with a computer as it is 

likely that this device will not only be storing and displaying the ultrasound data on a computer, but 

it will be interfacing with a computer to receive necessary user inputs.   
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d. Life in Service: Due to the nature of its use, the device does not experience much stress. Its 

lifetime, thus, should be fairly extensive, on the order of several years or more. It will most likely 

become obsolete before it wears out.  

 

e. Operating Environment: The device contains circuitry and plastics. It should not be exposed to 

very high or low temperatures, high humidity, strong magnetic fields, corrosive materials, physical 

stresses, or electric shock.  If handled with care, the device should fair very well in both clinical and 

research settings.  Care must be taken with it, however, if sterilized for use in a clinical setting, 

however, to ensure that the sterilization process does not destroy its sensitive electronics.     

 
f. Materials: A DSP chip from Texas instruments, the appropriate ultrasound data, a desktop computer, 

and a device for the DSP Chip to display and store the edited data on.   

 Dr. Yen has provided a TMS320DM6437 DaVinci DSP chip for us to work with for this 

semester.  Though this is not ideal for our purpose, this chip should allow us to gain an 

adequate understanding of how to work with DSP chips.   

 We have requested a ****** High Performance DSP chip, which is better suited to our 

project.    

 Sample ultrasound data has been provided by our clients Dr. Kobayashi and Dr. 

Vanderby. 

 The output device that is currently being used is a standard TV.  The TV can easily 

display the device’s output, but it can not store any outputted information. 

 Dr. Yen provided us with a desktop computer located in the Bioinstrumentation Lab in 

the Engineering Centers Building. 

 

Production Characteristics  

a. Quantity: Only one is currently needed for our clients. In the future, if the device is useful for 

research, clinical, or surgical applications, the quantity that will need to be produced is quite large.  

 

b. Target Product Cost: The cost of the final device would be cost of the DSP plus accessories such as 

RAM and a circuit board.  Therefore, the target cost will be below $3,000. 

 

Miscellaneous Requirements  

 

A. FDA Approval:  

 

The device will not need full FDA approval while it is being clinically tested. It will, however, be 

subject to the Clinical Trials & Investigational Device Exemption, which requires the following (Quoted 

from FDA, 2003):  

 

 An IDE approved by an institutional review board (IRB). If the study involves a significant risk 

device, the IDE must also be approved by FDA.  

 

 Informed consent from all patients,  

 

 Labeling for investigational use only,  

 

 Monitoring of the study, and  
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 Required records and reports.  

 

B. Customer: We have two clients, whose expectations are as follows:  

 

 Texas Instruments has agreed to donate “all resources necessary to develop new applications 

including hardware and software development tools,” including a DSP developer’s kit, supporting 

hardware, and consultation with their engineers. In exchange, they expect that their resources will be 

used to solve “a meaningful medical instrumentation or medical imaging design problem” (BME, 

2008)  

 

 Dr. Vanderby and Dr. Kobayahsi are overseeing this ultrasound project. They expect a device that 

can work in conjunction with a computer to quickly process stored ultrasound data to be developed 

by the end of the semester. In the future, they expect this device to be able to process 60 frames that 

are 700 x 700 pixels in size in under 5 minutes and to interface with a computer for data storage and 

display purposes.  

 

C. Research and Patient-related Concerns:  

 

Sterility The device will need to be sterilized between uses if used for anything beyond medical 

research. Due to the sensitivity of the device’s electronics to heat, it will probably be sterilized 

by chemical means.  

 

Privacy Clinical testing of the device will involve storage of patent data. This data will need to 

be stored securely, to protect the privacy of research participants.  

 

D. Competition To our knowledge and to the knowledge of our client, no device which measures and 

displays the stiffness vs. strain distribution in a tissues in real-time exists. 
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