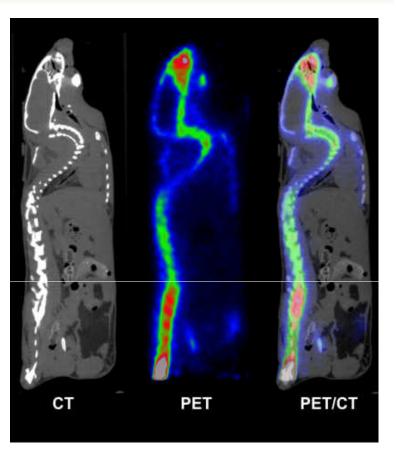
Mouse Positioning Device for Longitudinal Cancer Research

Justin Jeffery, Lab Manager Jamey Weichert, PhD Small Animal Imaging Lab, UW Carbone Cancer Center

Walter Block, PhD

Eamon Bernardoni Vanessa Grosskopf Jim Mott Samantha Paulsen Brooke Sampone

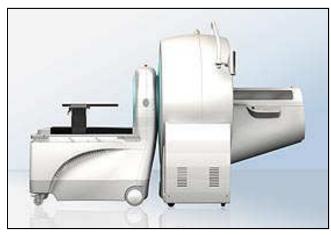

Cancer Treatment: Lab Productivity

- Longitudinal cancer treatment development
 - Animal models
 - Diagnostic imaging methods
 - Limitations in productivity
- Improved productivity requirements
 - Repeatable imaging methods
 - Current methods
- Improved productivity options
- Mouse positioning device selection
 - Testing
 - Potential problems
 - Future work

Evaluating New Cancer Treatments

- Provide state-of-the-art, noninvasive imaging support
- Small Animal Imaging Lab provides images for major producers of microCT, microPET, and hybrid scanners.
- Use animal models to perfect imaging techniques

http://www.cancer.wisc.edu/uwccc/services_smallanimal_equip.asp


http://www.df.unipi.it/~fii g/research_reconstruction .htm

Reasons for a New Device

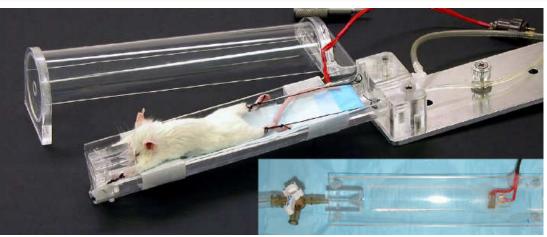
- Small Animal Imaging Lab
- Restrain mice during scans
- PET/CT modality
- Precise repositioning
- Required for serial scans

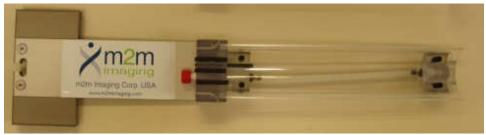
https://www.medical.siemens.com/

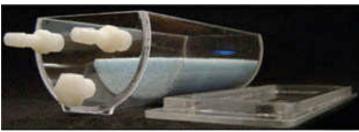
- Registration processing is time consuming
- Current method is labor intensive

Design Criteria

- Restrains mouse in case anesthesia fails
- Replicates position within 1 mm
- Positioning of animal and device takes 5-10 min
- Minimize interference with PET/CT imaging
- Easy to clean, no permanent cloth
- Acceptable for RARC approval
- Attaches to existing carbon fiber bed
- Multiple scans of 3-10 mice over multiple 2 week periods
- \$100 budget

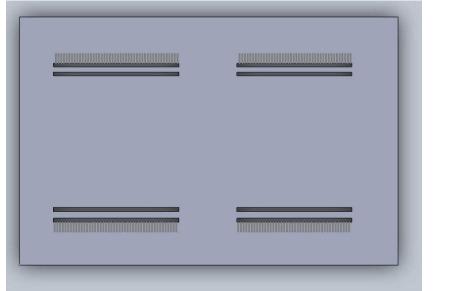

Current Device in Small Animal Imaging Lab




Devices Used in Other Labs

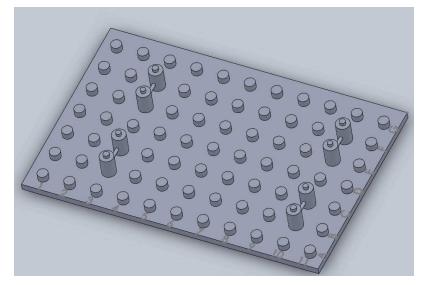
Crump Institute for Molecular Imaging http://www.iop.org/EJ/article/

m2m http://www.m2mimaging.com/products/

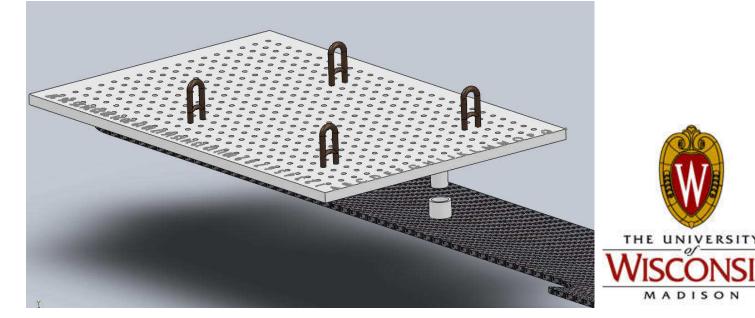


Numira http://www.numirabio.com/site/services/imaging-chamber

Sliding Velcro Slot Design

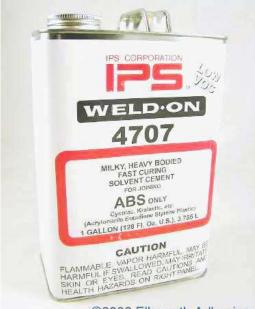

- Dimensions: 5 $1/2'' \times 3 1/2'' \times 1/8''$
- Material: Acrylonitrile butadiene styrene (ABS)
 - Inexpensive
 - Has low attenuation
- Two 1 1/2" slits in each corner cut 1/4" apart
- Restraints: 4 double-sided Velcro strips
- Ruler
- Device attaches to bed with pegs on bottom of board

Lego Board Design


- Dimensions: 5 1/2" x 3 1/2" x 1/8"
- Material: LEGO ABS [1]
- 144 1/5" diameter raised cylinders
 - Aligned in 16 rows and 9 columns
 - Letter and number coordinate system
- Device attaches to the bed with pegs on bottom of board
- Two LEGO pegs attached with a band placed over limbs
- Pegs also attached around body
- Record coordinates of pegs to replicate position

Peg Board Design

- Dimensions: $5 1/2'' \times 3 1/2'' \times 1/8''$
- Material: ABS
- 459 1/16" holes drilled 1/8" apart, 1/4" border
 - Aligned in 27 rows and 17 columns
 - Letter and number coordinate system
- Device attaches to bed with pegs on bottom of board
- Flat board allows for tracing of body of mouse
- Pegs attached to bands to go over limbs of mice



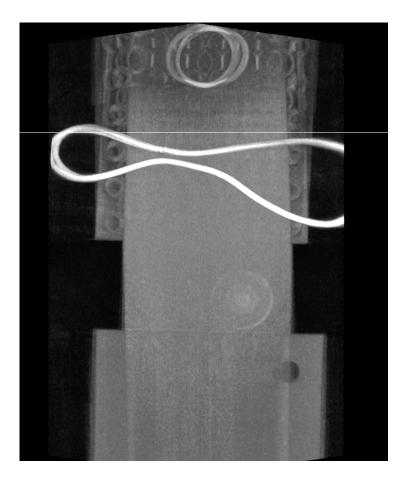
Evaluation of Design Alternatives

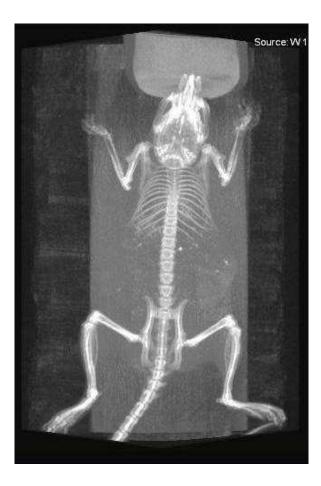
Criteria	Velcro Slot	Lego Board	Peg Board
Accuracy (35)	20	25	33
Ease of Use/Speed of Attachment (20)	12	18	16
Animal Safety (15)	12	12	10
Feasibility (15)	10	14	12
Sterility (10)	8	9	10
Cost (5)	3	5	5
TOTAL (100)	65	83	86

Obstacles to Overcome

- Ergonomics
- Acquiring peg materials
- Fabrication of pegs
- Durability of pegs
- Scanner friendly adhesives

C2006 Ellsworth Adhesives http://www.ellsworth.com/imagelibrary/jpegs/100/LargePics/4707GL.jpg


http://z.about.com/d/familycrafts/1/0/K/o/1/ct2-16_superglue.jpg



How will we test our device?

- Repeated attachments and scans
- Scanning device materials

Where will we go from here?

- Determine which formula of ABS to use [2]
 - -15% to 35% acrylonitrile
 - 5% to 30% butadiene
 40% to 60% styrene
- Determine what type of bands and pegs to use
- Secure device attachments to bed at WIMR

References

[1] The LEGO Group. (2009). *Product quality and safety.* Retrieved from http://www.lego.com/eng/info/default.asp?page=safety
[2] Lenau, Torben. (2003). *Material ABS – acrylonitrile butadiene styrene.* Retrieved from http://designinsite.dk/htmsider/m0007.htm

Acknowledgements

- Justin Jeffery
- John Floberg
- Jamey Weichert
- Walter Block

Questions?

