Attachment of prosthetic ear to cranial implant abutments

October 16, 2009

Marc Egeland-Leader

Paul Fossum-BSAC

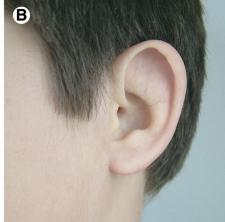
Nick Shiley-BWIG

Nick Thate-Communicator

Client: Gregory G. Gion, MMS, CCA Advisor: Professor Willis Tompkins

Outline

- Problem Statement
- Background Information
 - Reasons for ear prostheses
 - Existing options for patients
 - Problems with current designs
- Client Specifications
- Osseointegrated Abutments
- Design Ideas
 - Evaluation of ideas (design matrix)
- Future Work


Problem Statement

- To develop an auricular prosthesis attachment mechanism that is able to improve the current design
- The design should:
 - ensure a strong hold to the surgically implanted abutments
 - withstand the stresses of everyday use
 - release in the presence of excess force
 - allow the patient to easily affix and remove the prosthesis

Why are ear prosthetics needed?

- Microtia
 - Congenital defect that occurs unilaterally (1 in 8,000 births)
- Cancer effects
- Hemifacial microsomia (Goldenhar's syndrome)
 - Second most common birth defect (1 out of 4,000)
- Trauma

A. Example of left ear microtia

B. Slip-on prosthetic in situ

Current Options for Patients

- Reconstructive surgery
- Ear Prosthesis
 - Sleeve/Slip-on (onto actual ear)
 - Bar-clip
 - Magnet attachment
 - Biocompatible drying adhesives

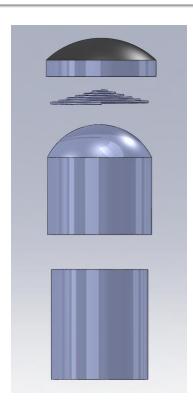
Example of Ear prosthesis (left) compared with matching ear (right)

Problems with Current Designs

- Sleeve/slip-on design
 - Only applicable in limited number of cases
- Bar-clip design
 - Bulky, difficult to clean, not aesthetically pleasing
- Magnet design
 - Issues with security of attachment

Current Osseointegrated Abutments

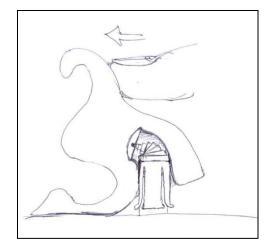
Three cranial implants surgically placed in the mastoid bone structure


Auricular prosthetic placed in situ using the same three abutments

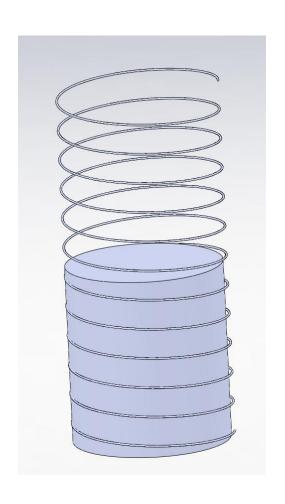
Client Specifications

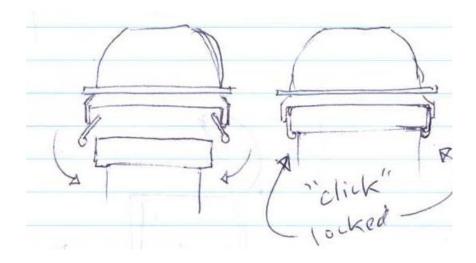
- Prosthesis should resist unintentional dislodgement
- Must be low profile and aesthetically pleasing
- Able to withstand considerable anterior and posterior force—approx. 5-10 lbs
- Adaptable to current abutment size (4.4 mm diameter)
- Prosthesis should be easy for patient to attach and remove

Flat Spring and Magnet Cap

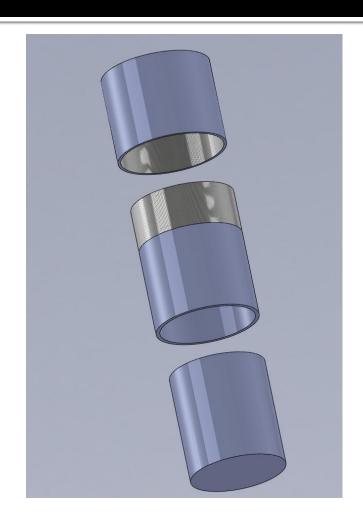

- Uses current magnet cap, but includes attached spring
- Spring attached to housing cap molded into prosthetic
- Spring allows for additional lateral force absorption

Flat Spring and Sheath


- Sheath slips over abutment and connects to spring before connecting to prosthetic
- Sheath allows for more stability than magnet
- Possible breakable/crumple sheath


Cylindrical Spring as Sheath

- Uses spring as means of both attachment and force absorption
- Spring acts as cap/sheath
- Simple design, but would not be secure


Active Clip with Magnet

- Uses current magnet design in conjunction with active clip onto abutment
- Provides a greater amount of security
- Poses problems in attachment and removal

Rigid Shearing Sheath

- Sheath design fits over abutment and connects to prosthetic
- Sheath made from breakable material to prevent excess force on abutment
- Would be made to be replaceable

Design Matrix

	Security	Ease of Attachment	Ease of Removal	Simplicity	Durability	Cleanability	Ease of Fabrication	Aesthetics	Material Cost	Total
	[20]	[15]	[15]	[10]	[5]	[5]	[10]	[15]	[5]	[100]
Flat Spring	15	13	11	8	4	3	7	13	3	77
and Magnet Cap										//
Flat Spring	17	10	13	8	3	3	8	13	4	79
and Sheath										75
Cylindrical Spring	11	12	10	9	4	2	5	12	4	69
as Cap										05
Active Clip	19	13	9	6	4	4	6	12	3	76
with Magnet										70
Rigid Shearing	12	10	14	10	1	4	9	11	5	76
Sheath										76

Future Work

- Other designs brought up by client
 - Use of silicone as spring material
- Possibility of combining aspects of several designs
- Order components
- Fabricate and test prototypes

Acknowledgments

- Gregory Gion
- Willis Tompkins
- Children's Hospital of Wisconsin
- FACES: The National Craniofacial Association