

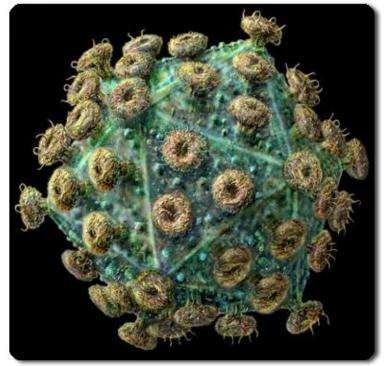
Molecular Antibody Protein Structure Model

Team Members Jon Mantes – Leader Andy LaCroix – BSAC Kimberli Carlson – Communicator Kara Murphy - BWIG

Advisor – Prof. Wan-Ju Li

Client – Marge Sutinen

Overview


- Problem Statement
- Motivation and Background
- Existing Devices
- Client Requirements
- Binding
- Binding Design Matrix

- Injection/ Replication
- Injection/ Replication Design Matrix
- Budding
- Budding Design Matrix
- Final Design
- Future Work

Motivation and Background

- Human Immunodeficiency
 Virus
 - Causes AIDS
 - No cure for disease
 - Spread through body fluids
- Conveys Severity of HIV
 - Permanent infection
 - Preventative measures

http://deems.files.wordpress.com/200 8/11/hiv_virus.jpg

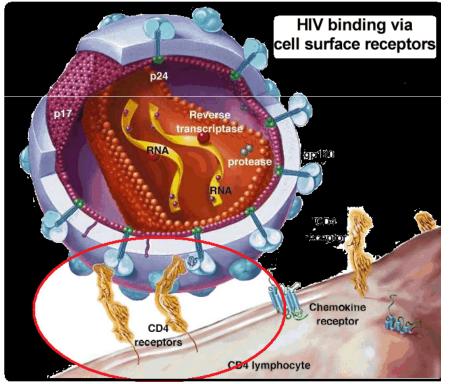
Existing Devices

- Posters
 - 2D picture
 - National Institute of Allergy and Infectious Diseases
- Computer Simulations
 - Getty Images video
- 3D Model
 - Merck and Company Inc.

Client Requirements

•3D and color coded

- Demonstrate irreversibility of HIV infection
- Easily visible to class of ~30 students
- Three basic steps:
 - •Binding
 - Replication
 - •Budding
- Compact and easily to transport
- PDF explanation of each step
- Budget of \$100


Binding Options

- Use a bottle cap to screw on
- Shows irreversibility of attachment

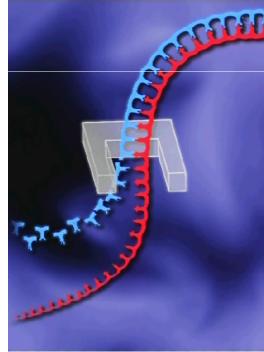
2) Magnets

- Ease of attachment
- Shows exclusive binding to CD4 receptors
- 3) Velcro
 - Easy to manufacture
 - Low cost

http://webs.wichita.edu/mschneegurt/biol103/lecture1 5/hiv_cellbinding.gif

THE UNIVERSITY

Binding Design Matrix



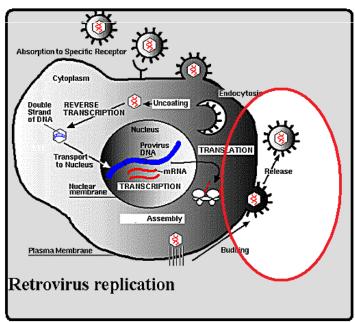
Design	Ease of Use (30)	Cost (10)	Manufacturability (20)	Teaching Effectiveness (30)	Consistancy (10)	Total (100)
Locking Device	25	10	15	29	9	88
Magnets	27	6	17	20	8	78
Velcro	22	8	18	13	6	57

Injection/Replication Options

- 1) Syringe pushing liquid through intertwined DNA tube
 - Low cost and easy to manufacture
 - Visual teaching tool as HIV intertwines with host cell DNA
- 2) Liquid filled squeeze bottle
 - Easy to use
 - Have to refill after each use
- 3) Marble rolling through tube
 - Easy to use
 - No clean up

http://hiv.boehringer-ingelheim.com/com/HIV/Infor mation_material/Images2.jsp

Injection/ Replication Design Matrix



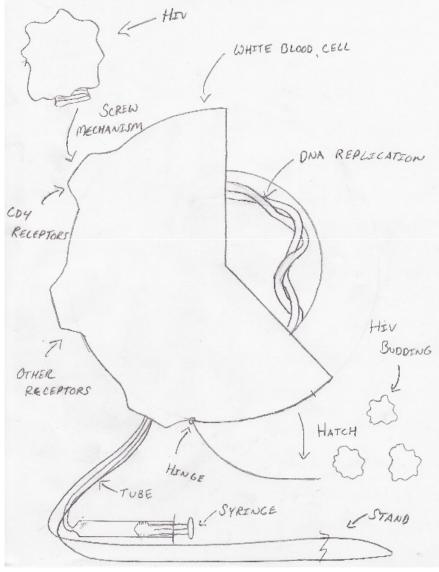
Design	Ease of Use (30)	Cost (10)	Manufacturability (20)	Teaching Effectiveness (30)	Consistancy (10)	Total (100)
Syringe/ Tube	27	10	16	25	10	88
Squeeze Bottle	19	8	18	20	8	73
Marble/ Tube	16	8	12	13	5	54

Budding Options

- 1) Hatch to release infected cells
 - Good visual teaching tool
 - Easy operation
- 2) Tubes extended from nucleus to new cells
 - Hard clean up process after operation
- 3) Bubbles
 - Could be problematic with refilling & has risk of being inconsistent in operation

http://www.mun.ca/biochem/courses/3107/Topics /retrovirus_replication.html

Budding Design Matrix



Design	Ease of Use (30)	Cost (10)	Manufacturability (20)	Teaching Effectiveness (30)	Consistancy (10)	Total (100)
Hatch	24	7	15	27	9	82
Tube/ Nucleus	28	4	19	18	9	78
Bubbles	19	4	10	24	4	61

Final Design

- Acrylic shell host cell
 - Covered in molding clay for texture
- Locking device for binding stage (screw cap)
- Syringe & Tube for injection/ replication stage
 - Colored liquid simulate DNA replication
- Hatch releases replicated HIV
 - Original and mutated HIV

Ergonomics and Ethics

- •Demonstration of steps of infection:
 - Screw-on attachment of HIV
 - Reasonable force required to squeeze liquid from syringe
 - Reliable hinge mechanism for budding HIV particles
- Light weight for easy transport
- Stable stand
- HIV/AIDS is a controversial topic
- Keep description of HIV infection purely scientific

Future Work

- Reliable support mechanism for nucleus
- Order materials
 - Acrylic shells
 - Molding material
 - Tubes
 - Miscellaneous materials
- Begin fabrication process

http://www.thedeafblog.co.uk/Thinking.jpg

- "Computer Generated Model of HIV in Bloodstream." Getty Images. 5 October 2009.
 <cache.gettyimages.com>
- Noble, Rob. "The Structure of HIV." Avert. 12 October 2009. http://www.avert.org/hiv-virus.htm
- "Replication Cycle of HIV." National Institute of Allergies and Infectious Diseases. 5 October 2009.<www3.niaid.nih.gov/topics/HIVAIDS/Understa nding/How+HIV+Causes+AIDS/howhiv.htm>

Questions?