Right Angle Screwdriver

Advisor: Thomas Yen Client: Ashish Mahajan

Overview

- Reconstructive surgery of the mandible
- Current Screwdriver
- Design Requirements
- Alternative Designs
- Design Matrix

Testing and Future Work

Reconstructive surgery of the mandible

- Broken mandible repaired with use of titanium plates and screws
- Current procedure uses straight screwdriver
 Incision made in gums to see screw
 - Incision made to the exterior cheek for screwdriver access
- Plates left in after surgery

Current Screwdriver

- How it works
 - Straight screwdriver
 - Ball bearing handle
 - Interchangeable screw head

Pros:

- Efficient for fastening screws in surgeries other than the mandible
- Cons:
 - Cannot reach mandible without exterior incision
 - With extra incision, screws are still hard to access

Design Requirements

- Create a right angle screwdriver that will eliminate need for an exterior incision
- Specifications

- Must fit standard incision size (3-5 cm)
 - Maximum thickness of 1.5 cm
- Safe and sanitary according to surgery protocol
- Must supply sufficient torque to seat screw

Design Idea #1

• Worm and Wheel Design

Using gear and rotating thread

Pros:

- Gives high levels of torque
- Works at a right angle

Cons:

- Surgeon loses "feel" of screw
- Increases number of turns per screw

Design Idea #2

Bevel Gear

- 2 mitered gears set at a right angle
- Pros:
 - Can be easily enclosed
 - Applies sufficient torque
- Cons:
 - Too big for specifications

Design Idea #3

Sprocket and Chain Design

- Two sprockets connected with a chain
- Handle and screw head at opposite ends

Pros

- Provides 1:1 torque
- Able to fit in small incisions
- Use existing screw driver for handle and screw head
- Cons

Moving parts make it hard to sterilize

Design Matrix

Criteria		Possible Designs		
Considerations	Weight	Sprocket and	Worm and	Bevel gears
		chain	wheel	
Safety	10	10	10	10
Ease of	20	18	12	13
Use/Ergonomics				
Size	35	32	32	15
1:1 Torque	25	23	12	23
provided				
Durability	10	8	10	10
Total	100	91	76	71

Testing and Future Work

- Find torque needed to seat screws
- Find torque load capacity of prototype
- Making the prototype enclosed
- Test durability

Design interchangeable screwhead

Special Thanks

 Ashish Mahajan, MD Resident, Plastic and Reconstructive Surgery, Client

Dr. Venkat Rao, MD, MBA, Plastic and Reconstructive Surgery

Thomas Yen, PhD, Advisor

Questions?