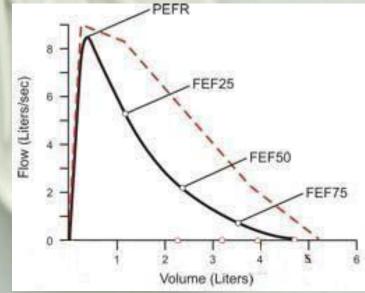
Low-cost, Open-source Spirometer


Jeremy Glynn, Andrew Dias, Jeremy Schaefer, Andrew Bremer

Advisor: Prof. Mitch Tyler Client: David Van Sickle, Ph.D.

Spirometry Background

- Measures pulmonary function
 - Air flow and volume
- Test parameters
 - <u>Peak Expiratory Flow</u>
 - Forced Vital Capacity
 - <u>Forced Expiratory Flow</u>

[1]

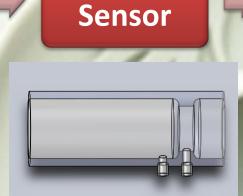
Motivation

- Diagnostic tool for respiratory diseases
 - Chronic Obstructive Pulmonary Disease (COPD), including emphysema
 - Asthma
- COPD is 4th leading cause of death worldwide
 Estimated to be 3rd by 2020[2]
- Over 500 million with these diseases [2,3,4]

Problem Statement

- Develop a low-cost, reliable spirometer
 - Affordable in developing nations
 - Standardized A/V coaching for patient
 - Connect to computer via USB
 - Evaluate quality of maneuver

Design Specifications


- Measure air volumes up to 8 L, flows to 14 L/s
- Durable and portable
- Only factory-set calibration
- Easy to disinfect
- Universal interface
- Cost under \$50

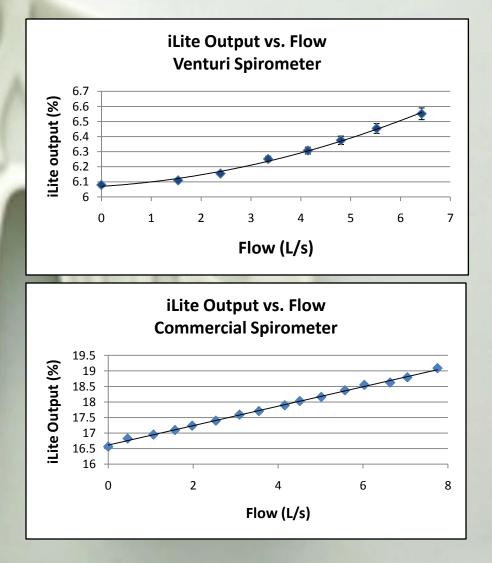
Spring 2009

•Forcefully Exhale

Pressure

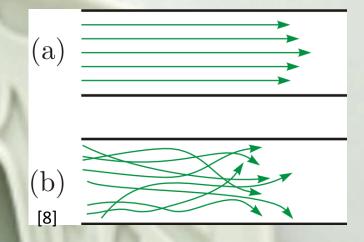
Circuitry

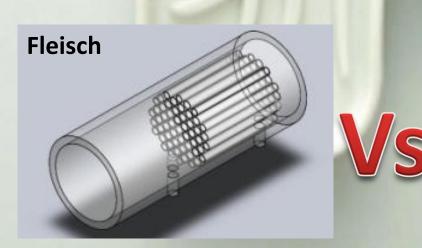
Computer


Analog voltage output

AmplificationA/D conversionOutput via USB

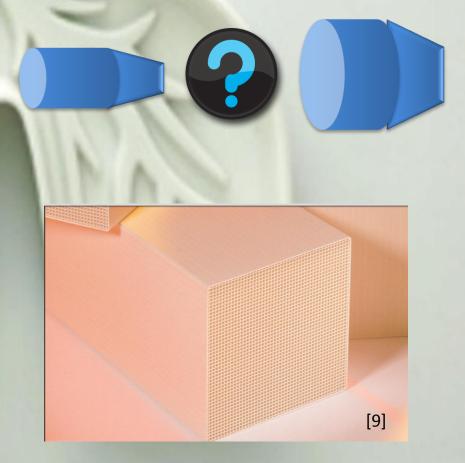
Calculate test resultsDisplay spirogram


Focus of Summer Work


- Improve low-flow sensitivity
 - Linear flow-pressure relationship
- Not possible with Spring design

Hardware Development

- In search of laminar air flow
 - Produces linear flowpressure relationship



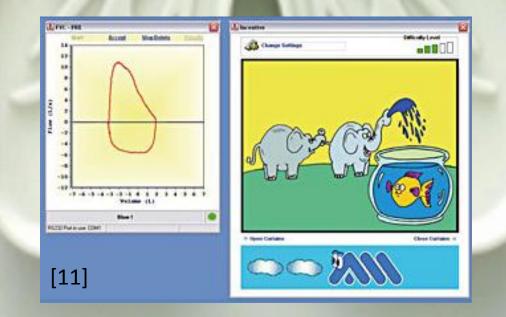
Design Matrix: Body Type

	Weight	Fleisch	Lilly	Constriction
Low resistance	25	15	20	23
Material cost	5	4	3	2
Ease of cleaning	20	15	10	18
Ease of manufacture	15	12	7	5
Pressure vs. flow linearity	25	20	20	5
Pressure vs. flow SNR	10	8	2	9
Total	100	74	62	62

Hardware Refinements

- Optimize body diameter
 - Linear flow/pressure curve
 - Low flow impedance
- Alternative materials
 - Corning Celcor®
 - Other custom ceramics

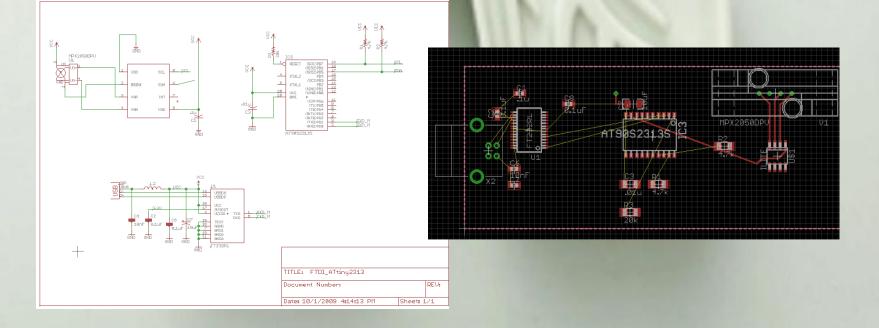
Design Matrix: Software Platform


	Weight	Adobe AIR	Microsoft Silverlight	Java
Supports USB	25	17	6	23
Supports different	11	N VIN	12	
operating systems	20	17	10	15
Graphics capabilities and				
ease of implementation	15	13	13	5
Data processing speed	15	9	9	13
Smoothness in interface	10	9	9	3
RAM usage	15	5	5	8
Total	100	70	52	67

Graphical User Interface

- Using Adobe AIR because of graphics
- Links to video tutorials
- Real-time
 - Flow/volume and volume/time graphs
 - Animation incentive to encourage user
 - Major focus for this semester

Coaching


- Audio will accompany incentive screen
- User must exhale for full 6 seconds
- Must be standard same for all patients

http://www.spirometry.com/ENG/Products/PopUp.asp?nome=WP_screen_incentive.jpg&Txt=WinspiroPRO%20Paediatric%20Incentive%20screenshot

Fall Goals

- GUI work
- PCB Layout and microcontroller programming
- Documentation IRB and WARF for testing

Questions?

References

- 1. Morgan Scientific. What is a Pulmonary Function Test. http://www.morgansci.com/customer-resource-center/pulmonary-info-for-doctors/what-is-a-pft-test-2.php>.
- 2. AARC (American Association for Respiratory Care). < http://www.aarc.org/headlines/08/11/copd_month/>.
- 3. World Health Organization. Chronic respiratory diseases. http://www.who.int/respiratory/en/.
- 4. American Academy of Allergy Asthma and immunology. Asthma statistics. http://aaaai.org/media/statistics/asthma-statistics.asp.
- 5. ZMDI. ZMD31014 Sensor Signal Conditioner. <http://www.zmd.biz/signal_conditioner.php?content=sensor&product=zmd31014&prod_cont=brief>.
- 6. Embedded Systems News. Microchip PIC18F1XK50. <http://embeddedsystemnews.com/microchipannounces-pic18f13k50-and-pic18f14k50-lowest-cost-usb-microcontrollers.html>.
- 7. FTDI Chip. FT232R. < http://www.ftdichip.com/Products/FT232R.htm>.
- 8. Wikipedia Commons. Laminar Flow. http://commons.wikimedia.org/wiki/File:Toky.png>.
- Corning Environmental Technologies. Standalone Substrates. http://www.corning.com/environmentaltechnologies/products_services/corning_celcor_substrates_stat ionary applications.aspx>.
- 10. http://blog.lib.umn.edu/gray0239/architecture/
- 11.<http://www.spirometry.com/ENG/Products/PopUp.asp?nome=WP_screen_incentive.jpg&Txt=WinspiroP RO%20Paediatric%20Incentive%20screenshot>.