ARTERIAL ACTUATOR

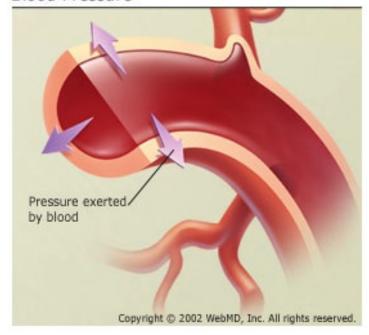
Team: Nick Thate, Evan Flink, Clara Chow, Henry Hu

Client: Prof. John Webster

Advisor: Amit Nimunkar

OUTLINE

- Problem statement
- Background information
 - Blood pressure & arterial stiffness
 - Current methods
- Proposed system components
- Preliminary data
- Proposed designs; design matrices
 - Actuator and overall system
- Future Work


PROBLEM STATEMENT

- Cardiovascular disease is a top killer
- Blood pressure and arterial stiffness are indicators of cardiovascular health
- Long-term goal: design a system that quantitatively measures blood pressure and arterial stiffness on a single artery
- Semester goals:
 - Design an actuating mechanism
 - Assemble the system comprised of an ultrasound probe, a pressure sensor, and the actuator

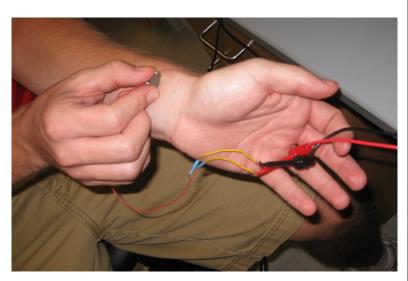
Blood Pressure & Arterial Stiffness

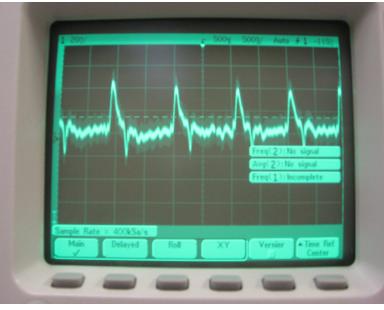
- Blood pressure is the force of blood pushing against walls of the arteries
 - Systolic/diastolic
- Arterial stiffness is the elasticity of artery walls
 - Arteries stiffen as
 a result of age,
 atherosclerosis, and
 fraying of elastic fibers

Blood Pressure

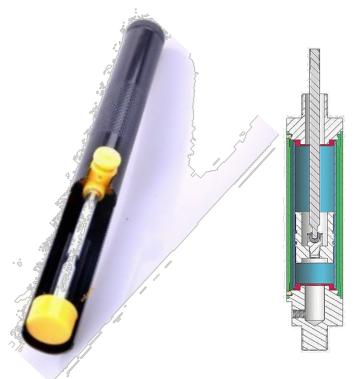
CURRENT METHODS

- Auscultatory method
 - Mercury Sphygmomanometer & Korotkoff Sound Technique
- Oscillometric method
 - Electronic transducer records oscillations
- Arterial stiffness is measured via pulse wave velocity (PWV)
 - PWV is measured between carotid and femoral arteries

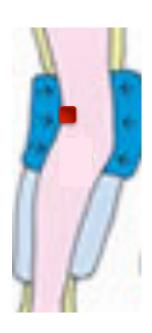



PROPOSED SYSTEM COMPONENTS

- Ultrasound
 - Used to find exact artery location
 - Determine artery compression
- Pressure sensor
 - Measures blood pressure
 - Outputs pressure waveform
- Actuator
 - Induces a step input
 - Pressure sensor measures artery response
 - Evaluated to determine arterial stiffness


PRELIMINARY DATA

- Connected piezoelectric sensor to an oscilloscope
- Found pulse waveform using sensor
- Measured brachial, radial, and carotid arteries



Proposed Designs – Actuator

• Spring-loaded • Air-loaded • Air jet • Protrusion

in cuff

Proposed Designs – Overall System

• Portable brace • Mounted sleeve • Surface strap

Design Matrix – Actuator

Weight	Criteria	Spring-Loaded	Air-Loaded	Air Jet	Protrusion in Cuff
30	Performance	24	28	14	14
20	Adjustability	12	17	17	15
20	Patient Comfort	13	13	17	14
12	Ease of Fabrication	9	8	11	11
10	Durability	7	6	9	8
8	Size	6	5	5	7
100	Total	71	77	73	69

Design Matrix – Overall System

Weight	Criteria	Portable Brace	Mounted Sleeve	Surface Strap
30	Patient Comfort	24	21	15
20	Stability	10	18	16
20	Ease of Fabrication	17	16	19
20	Ease of Clinical Use	18	16	16
10	Aesthetics	6	7	5
100	Total	75	78	71

FUTURE WORK

- Order materials:
 - Piezoresistive pressure sensor
 - Actuator components
 - Raw system components
- Ensure functionality of ultrasound and sensor
- Test actuating mechanisms
- Assemble components
- Test entire system

ACKNOWLEDGEMENTS

- Client Prof. John Webster
- Advisor Amit Nimunkar
- Prof. James A. Will
- Chris Krueger
- o Elena Bezrukova
- Ziyad Aloqalaa