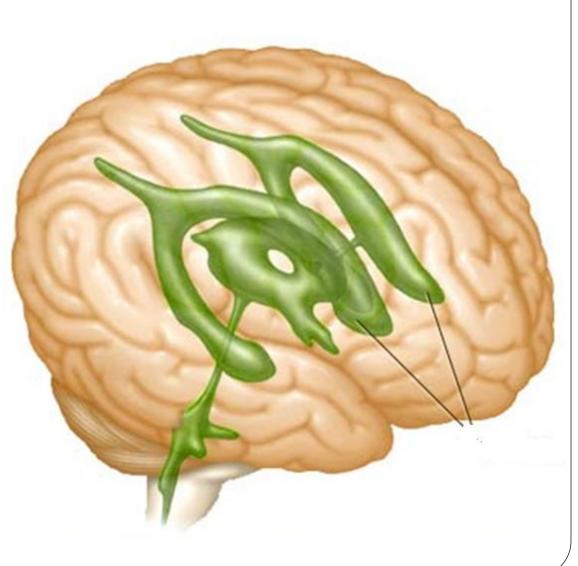
Mechanical model for neuro-endoscopic surgery simulation

Team Members:

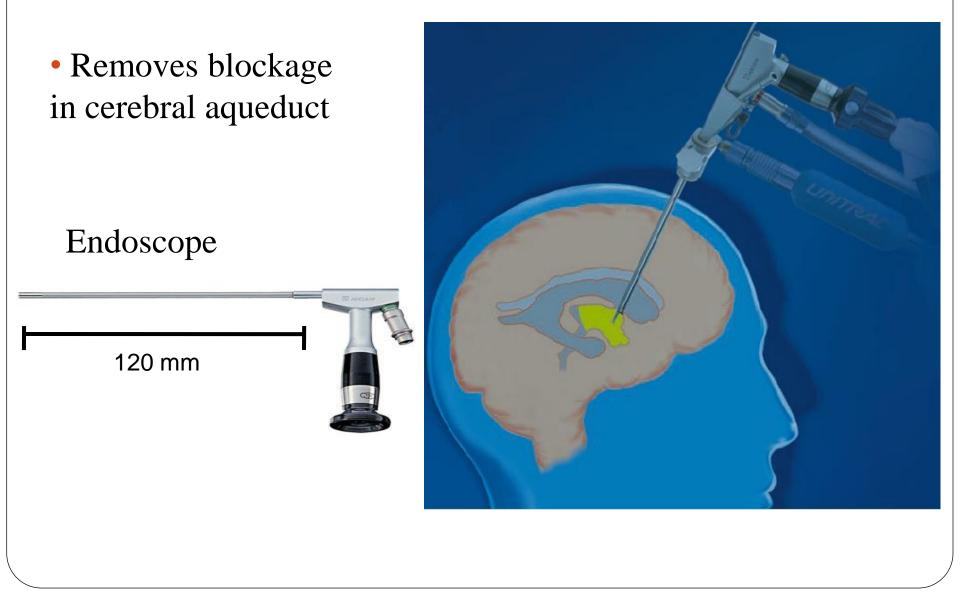
Anyi Wang: BSAC Alan Meyer: BWIG Courtney Krueger: Communicator Kimberli Carlson: Leader

BME 300 Department of Biomedical Engineering University of Wisconsin-Madison

15 October 2010


Overview

- Background and Motivation
- Client Requirements
- Problem Statement
- Force Sensor Design


- Injection Mold Ventricle System
- Fluid Filled Ventricles
- Final Design Selection
- Future Work

Background

- Ventricular System
 - Located in cerebrum
 - 4 ventricles
 - Cerebral aqueduct
- Function
 - Produces CSF

Endoscopic Third Ventriculoscopy

Reasons for Surgery

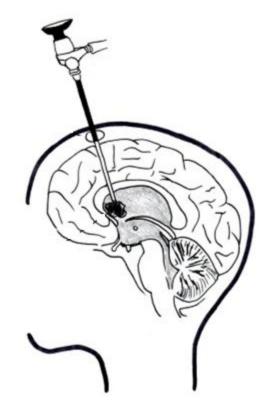
- Hydrocephalus
 - Fluid buildup in brain
 - Results in swelling
- Blockages of cerebral aqueduct
 - Swelling

• Tumor

• Edema

Motivation

- Current method for surgical practice
 - Cadavers


•

- First surgery on patients
- Existing devices not specific for Endoscopic Third Ventriculoscopy

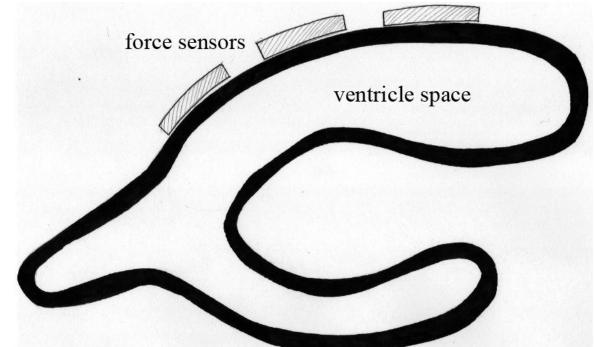
Client Requirements

- Simulate endoscopic 3rd ventriculoscopy
- Anatomically correct
- Up to 6.2 mm diameter endoscope
- Withstand daily use
- Compatible with current equipment

Problem Statement

- Need surgical simulator for Endoscopic Third Ventriculoscopy
- Model ventricular system
 - Practice surgeries
 - Patients not subject to initial trial surgeries
- Model must:
 - Be anatomically correct
 - Allow practice control of fine motor skills
 - Practice angle of endoscope insertion into the brain

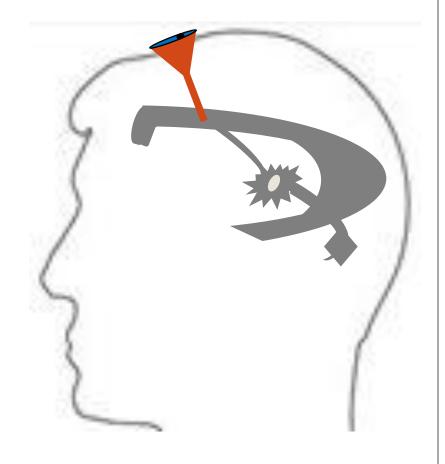
Injection Mold Ventricle System

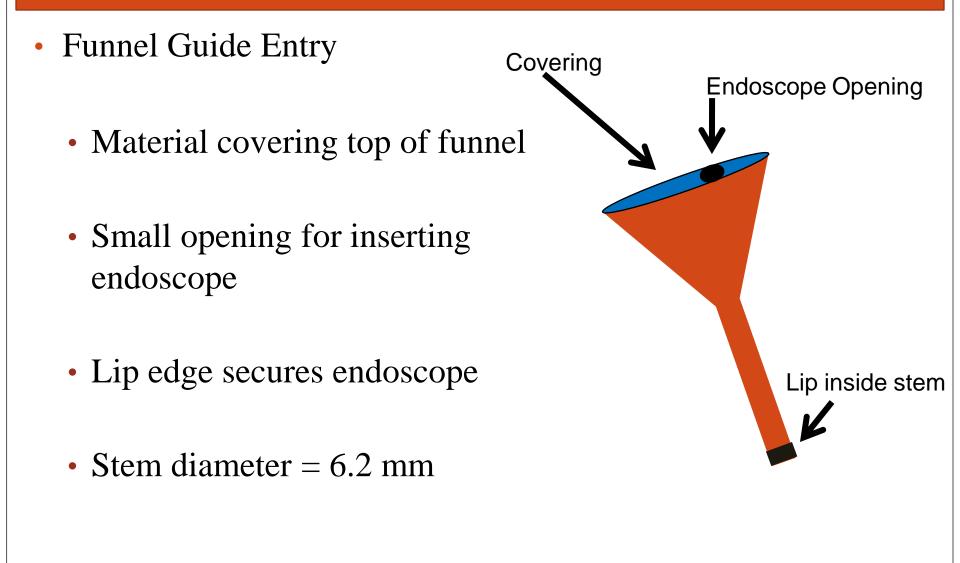

- Mold from a cast of the ventricles
 - 3D rendering from MRI
 - Cast from Rapid Prototyping
- Liquid Injection
 - Gel mold

Pink = gel mold Blue = ventricle spaces

• Ability to be mass-produced

Force Sensor Design


- Rapid prototype cast of ventricles
 - Thin walls
 - Supporting gel outside force sensors
- Force sensors on outside walls
 - Threshold force
 - Buzzer


Immediate feedback to surgeon

Fluid Filled Ventricles

- Rapid Prototype Ventricle cast
- Funnel Guide Entry
 - Practice proper entry angle into ventricles
- Fluid filled
 - Siphoning and replacing CSF
 - Researching mineral oil
- Insertion of material to simulate blockage in cerebral aqueduct

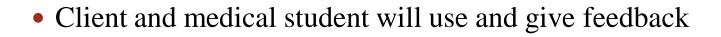
Funnel Entry Guide

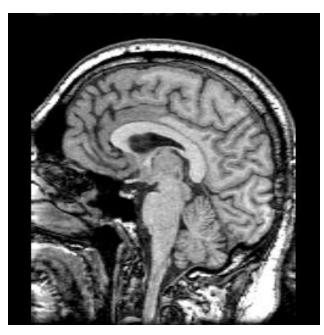
Final Design Selection

Design	Anatomical accuracy	Teaching Effectiveness	Durability	Feasibility	Cost	Total score
Force Sensor Design	4	4	3	1	3	15
Injection Mold Ventricle System	3	3	1	4	2	13
Fluid Filled Ventricles	4	4	4	5	5	22

Materials Selection

Material	Durability	Representative of Brain Tissue Properties	Fluid Compatibility	Total
Fullcure 720	5	1	5	11
Tango Black	5	3	4	12
DuraForm Flex Plastic	4	5	5	14
Tango Plus Fullcure 930	4	5	4	13


Final Design


- Fluid Filled Ventricles
 - Funnel guided entry practice
 - Fluid filling to imitate CSF
 - Head shaped container
- DuraForm Flex Plastic for rapid prototyping of the model

Future Work

- Build the funnel guide
- Reconstruct 3-D image of the ventricles
 - MRI scans of brain
- Obtain rapid prototype of image
- Assemble model
- Test model

Questions?

References

- Academic Encyclopedias and Dictionaries. (2010). Ventricular System. Retrieved on October 8, 2010 from: http://en.academic.ru/dic.nsf/
- Aesculap. (2010). "Aesculap Neurosurgery MINOP Neuroendoscopy Systems." Retrieved on October 8, 2010 from: http://www.aesculapusa.com/default.aspx?pageid=218
- Fine Line Prototyping Inc. (2010). Materials. Retrieved on September 26, 2010 from: www.finelineprototyping.com
- Immersive Touch. (2010). Sensimmer. Retrieved on September 12, 2010 from: http://www.immersivetouch.com
- Iskandar, B. J. (2010). University of Wisconsin-Madison Department of Neurological Surgery.
- National Institute of Neurological Disorders and Stroke (NINDS). (2010). Hydrocephalus Fact Sheet. National Institutes of Health. Retrieved on October 8, 2010 from: http://www.ninds.nih.gov/disorders/hydrocephalus/detail_hydrocephalus.htm#toc
- Objet Geometries Inc. (2010). Materials. Retrieved on September 26, 2010 from: www.objet.com
- Pope, R. E. (2010). Neuroendoscopy. Retrieved on October 8, 2010 from: http://www.spinesurgeon.com.au/index.htm
- ProtoCam. (2010). Materials and Polymers. Retrieved on September 26, 2010 from: www.protocam.com
- SimuLab Corporation. (2010). TraumaMan. Retrieved on September 12, 2010 from: http://www.simulab.com/home-traumafamily
- Simulated Surgical Systems. (2010). RoSS: Robotic Surgical Simulator. Retrieved on September 12, 2010 from: http://www.simulatedsurgicals.com/index.html
- LifeART image (2006). Lippincott, Williams, Wilkins. Retrieved on October 8th, 2010 from: http://www.obfocus.com/questions/qanda10.htm