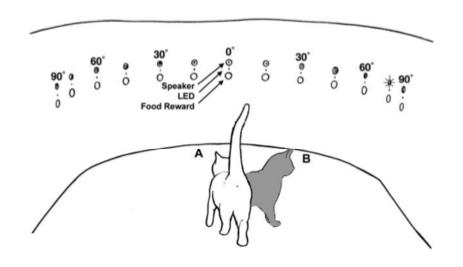

Feline Acoustic and Visual Orienting Arena

Caleb Durante, Drew Birrenkott, James Madsen, Mike Nonte Client: Dr. Tom Yin Advisor: Prof. Chris Brace

Former Design Project


Cryoloop

- Localized cooling and inactivation of the cortex
- Helpful in assessing importance of cortex in sound localization
- Used by Lomber in 1999
- After meeting with client no design enhancements were needed

New Design Project

- Feline acoustic and visual orienting arena
 - Recreate Lomber set-up as control to test against the client's findings
 - Demonstrate inability of cat's motor function after cortex has been cooled
 - Create speaker, sensor, and food dispensing set– up

Problem Statement

The aim of this project is to develop a testing apparatus to aid in determining the effect of deactivation of the auditory cortex on feline sound localization. A previous testing apparatus has been developed by Lomber et al., but there is concern that this method introduces human bias. A key goal of this project is to eliminate any interaction between human and feline in the testing procedure.

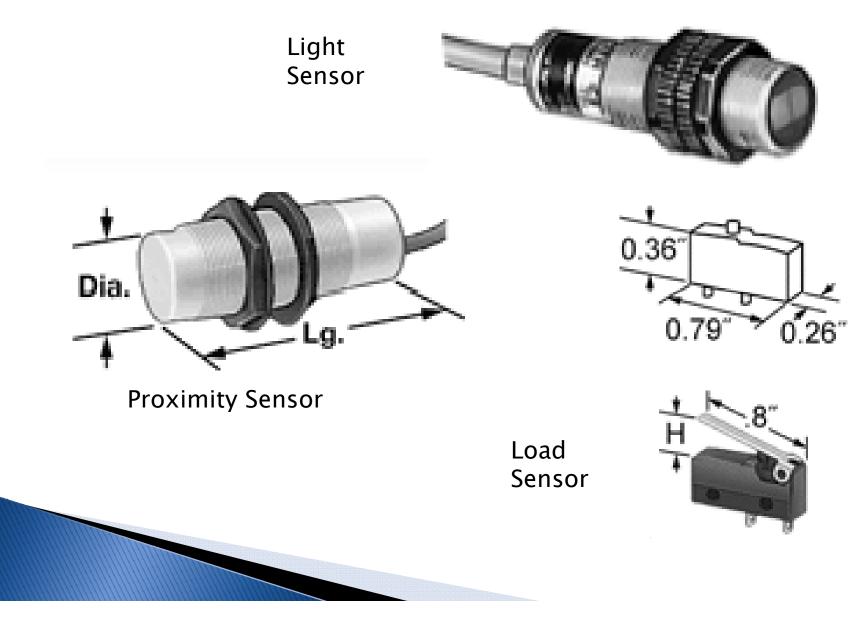
General Set-up

Factors	Weight	Rating (1 to 10)			
		Swing Arm	4 Speakers	Track	
Mechanical Noise	0.35	3	7	5	
Time to Set up	0.15	3	9	4	
Cost	0.05	3	6	5	
Ease of Use	0.25	2	8	4	
Repeatability	0.20	8	7	6	
Total	1.00	3.75	7.50	4.80	

Type of Food Reward

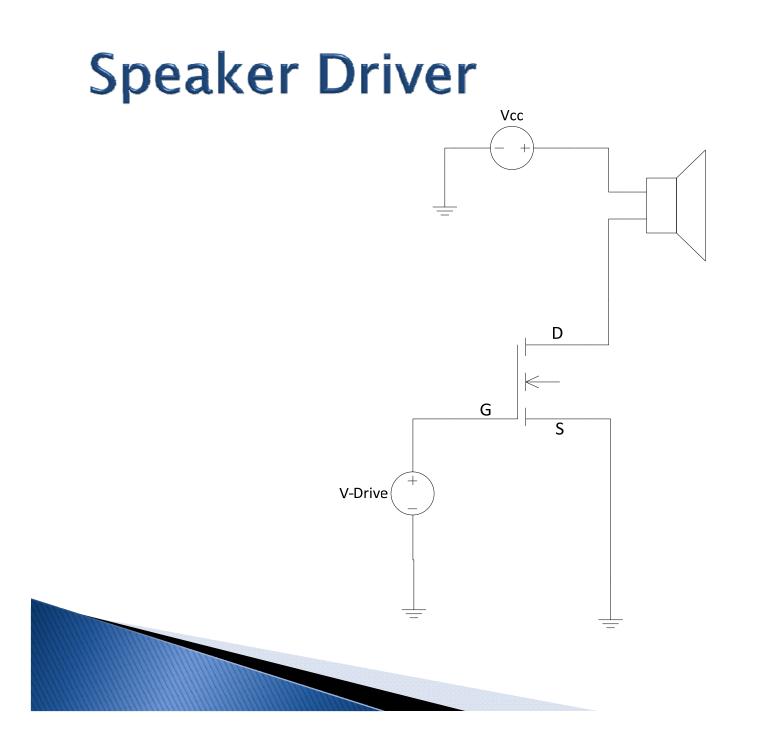

Factor	Weight	Rating (1 to 10)			
		Dry Pellets	Wet Food (Ball Valves)	Wet Food (Pinch Valves)	Instantly Mixed
Client Preferences	0.40	1	8	8	5
Simplicity	0.10	9	3	6	1
Repeatability	0.30	3	8	7	2
Cost	0.05	8	2	5	2
Resistance to Error	0.10	2	8	8	2
Restock					
Requirement	0.05	8	3	3	8
Total	1.00	3.20	6.95	7.10	3.40

Pump and Valve Options

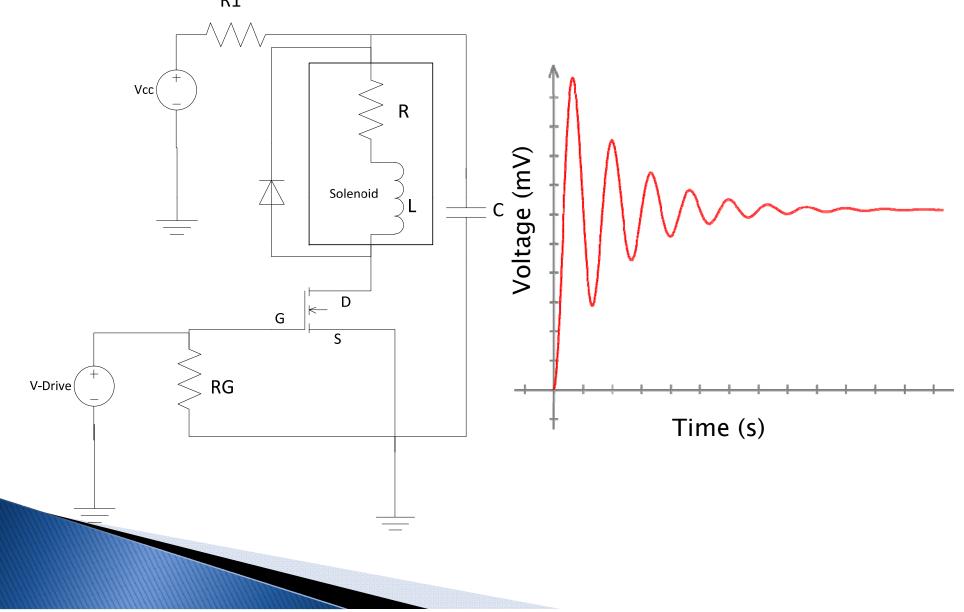


Pump and Valve Options

Factors	Weight	Rating (1 to 10)			
					Compressed
		4 Pumps, 4	1 Pump, 4	1 Pump, 4	Air into
		Pinch Valves	Pinch Valves	Ball Valves	Reservoir
Safety	0.25	8	8	8	4
Cost	0.05	4	7	3	5
Ease of Use	0.20	8	8	2	4
Clogging Probability	0.40	6	6	3	6
Ease of Repair	0.05	8	6	3	2
Size	0.05	5	7	7	2
Total	1.00	6.85	7.00	4.25	4.65



Switch Options



Switch Options

Factor	Weight	Rating (1 to 10)			
		Proximity Switch	Light Activated Switch	Load Sensing Switch	
Force Exertion Needed	0.05	10	10	5	
Cost	0.05	3	3	8	
Minimize False Positive	0.35	4	2	9	
Ease of Use for Cat	0.25	8	8	6	
Lifetime	0.05	7	7	5	
Repeatability/Reinforcement	0.25	5	5	8	
Total	1.00	5.65	4.95	7.55	

Solenoid Driver

Design Specifications

- Placement of speakers around 4 x4 x4ft cube
- Shouldn't interfere with AC magnetic field
- Pumps must be able to accommodate viscous food slurry, density of 1.052 g/mL (water = 1.0 g/mL)
- Create 100 ms broadband noise for testing
- Less than 2.2241 Newtons to activate load switch
- Deliver 1-2 mL of cat food slurry per reward issued
- Pump must facilitate a flow rate of 1 mL / sec

Looking Ahead


- Choose specific parts to purchase
- Run general diagnostic tests on each individual aspect of design
- Test frequency response range of individual speakers
- Fabricate a single speaker station with working food delivery
- Test single speaker station and compare to design specifications
- Build final 3 speaker setups and install in sound proof booth
- Test 4 speaker setup, peristaltic pump, and load sensor compatibility with cat

Acknowledgements

- Dr. Tom Yin
- Prof. Chris Brace

Questions?

