Hemodynamic Analysis System

Advisor: Professor Mitch Tyler Client: Professor Naomi Chesler Team members: Sarah Czaplewski, Megan Jones, Sara Schmitz, and William Zuleger

Overview

- Pulmonary Hypertension
- Echocardiography and Right Heart Catheterization
- Project Motivation
- Current Analysis System
- Specifications for New Device
- Device System Diagram
- Proposed Hemodynamic Analysis Designs
- Assessment of Designs
- Construction and Validation

Pulmonary Hypertension (PH)

- High pressure in pulmonary arteries
- Heart cannot keep up with high pressures

- Can lead to a number of issues:
 - Enlargement of the right heart
 - Fluid build up in liver or other tissues
 - Heart failure

Doppler Echocardiography

• Use of standard ultrasound to image the heart

- Returned signals are Doppler shifted
- The two frequencies are related by: $f_a = \frac{2f_o v \cos \theta}{c}$
- Measures instantaneous velocity and flow rates

Right Heart Catheterization

- Measures pressure in the right heart and pulmonary arteries
- Catheter inserted into major vein and threaded to the pulmonary artery
- Used to monitor various heart conditions

Right Heart Catheter

Project Motivation

- Calculate pulmonary vascular impedance (PVZ) with Doppler echocardiography and right heart catheterization
- PVZ in diagnosing PH
 - Determines artery stiffness
 - Identifies defect location
- To calculate PVZ, must sync arterial flow & pressure
- Synchronizing device needed for earlier, more efficient detection of PH

Current Device

- Collects and analyzes rightheart catheterization, echo, and ECG data
- Raw data not synchronized
- Cannot calculate PVZ
- Provides excess data analysis
- Must be used in conjunction with large outdated PC
- Cost: \$30,000

Front view of current device attached to outdated laptop

Design Specifications

- Convert echo & catheter analog signals to digital output
- Synchronize time, pressure, and flow data
- Sample 20 times per cardiac cycle (50 Hz)
- Store data in a file for later interpretation
- Cost less than \$1000/device
- Weigh less than 10 pounds, fit in a 12" cube
- Be aesthetically pleasing and professional

Conceptual System Diagram

Design Alternative #1: Hardware Device

- ADC Data acquisition
- Hardware Signal Analysis
- Onboard Data storage
- USB or Firewire output
- Pros
 - Tailored to specific problem
 - Capable of synchronization
- Cons
 - Complicated hardware integration
 - Inadaptable

Design Alternative #2: Microcontroller

- ADC Data acquisition
- Microcontroller Signal Processing
- Onboard Data storage, or USB/Firewire PC interface
- Pros
 - Reprogrammable
 - Capable of synchronization
- Cons
 - Slow signal processing with JAVA
 - Input gain adjustments

Design Alternative #3: PC Oscilloscope

- USB ADC data capture
- Digital Oscilloscope
- Integrate with LabView for signal analysis
- Pros
 - Adaptable design
 - Simple data acquisition with high fidelity
 - Simple prototyping
- Cons

• Expensive

Design Matrix

Criteria	Weight	Microcontroller	Hardware	РС
			Device	Oscilloscope
Cost	5	5	4	1
Ease of Production	15	9	5	13
Ability to	20	15	15	20
Synchronize				
Aesthetics	5	5	5	5
Sampling	20	20	20	20
Frequency				
User Friendly	20	12	12	18
Interface				
Size	5	5	5	5
Adaptability	10	5	2	10
Total	100	76	68	92

Selected Design

- 2 PC Oscilloscopes working together to offer 4 inputs
 - Parallax USB Model \$139.95 each
 - 4th input can be used as a potentiometer to calibrate input gain
- Design Specs
 - 2 channels
 - 500 KHz sample rate
 - 200 KHz bandwidth
 - 8 bit vertical resolution

Prototype Testing

- Test synchronization of two oscilloscopes with a square wave
- Connect to both right heart catheter and echo machine
 - Schedule times for use
 - Both must be present
 - Human subject
- Test software/programming

Future Work

- Order necessary parts, build the device, and test it
- Gain experience using LabVIEW and/or MATLAB
- Software programming:
 - Create code to calculate blood flow velocity
 - Include diameter of artery
 - Synchronize oscilloscopes

Acknowledgments

- Professor Mitch Tyler
- Professor Naomi Chesler
- Professor Dennis Bahr
- Professor William Schrage

Questions

References

• Text

- Arcasoy, S., et al. Echocardiographic Assessment of Pulmonary Hypertension in Patients with Advanced Lung Disease. Vol 167: pp 735-740. 2002. http://ajrccm.atsjournals.org/cgi/content/full/167/5/735
- Shung, K. K. Diagnostic Ultrasound: Imaging and Blood Flow Measurements. CRC Press: 2006.
- Tabima, D. M., et al. The effects of chronic hypoxia on pulmonary input, characteristic impedance and wave reflections: A comparison between time and frequency domain methods.
- http://www.nlm.nih.gov/medlineplus/ency/article/003869.htm
- http://www.nlm.nih.gov/medlineplus/ency/article/003870.htm
- http://www.heart.org/HEARTORG/Conditions/CongenitalHeartDefects/TheImpactofCongenitalHeartD efects/Pulmonary-Hypertension_UCM_307044_Article.jsp
- http://www.medicinenet.com/pulmonary_hypertension/article.htm
- Figures
 - http://www.pphlaw.com/ (slide 3)
 - http://www.musculoskeletalnetwork.com/hypertension/content/article/1145425/1404927?pageNumber =8 (slide 4)
 - http://www.drugs.com/cg/right-heart-catheterization-inpatient-care.html (slide 5)
 - http://www.parallax.com/Store/Microcontrollers/BASICStampProgrammingKits/tabid/136/ProductID/ 46/List/1/Default.aspx?SortField=ProductName,ProductName (slide 14)