HIV Barrier Model

Team

Jessica Kou – Leader Bret Olson – Communicator Lisle Blackbourn – BWIG Albert Wang – BSAC

Client

Dr. Marge Sutinen Dept. of Medicine University of Wisconsin Hospital and Clinics

Advisor Chris Brace

Overview

Problem Statement Background Motivation **Design Specifications Design Alternatives Design Matrices Final Design Future Work**

Problem Statement

Currently the original version has been received extremely well by client's classes in the medical genetics course "Contemporary Issues on HIV/AIDS"

However, the current model is **fragile** and **not easily transportable**. The client is requesting an improved more sturdy and mobile product.

Design needs to demonstrate the strength and durability of latex and polyurethane barriers against HIV infection and other sexually transmitted infections.

Background

University of Texas Volunteer Studies

Couple studies where one partner has HIV while the other was not infected.

	US	Haiti	England
Consistent Users	0%	1%	0%
Inconsistent Users	10%	6.8%	4.8%

Tensile Test (Strength)

.0

Airburst Test

Current Testing Techniques

Electrical Conductance Test

1111

Water Leak Tes

Motivation

Safer Sex

Consistent Condom Use

Education

http://www.funnycommercialsworld.com

Current Model - Apparatus

Base/Structure

Current Model – Current Conditions

Defects

- Fragile pole
- Heavy weight (beads)
- Time-consuming installation
- Bulky for transportation

Design Specification

Client Requirements

- A more portable model
- Light weight
- Large enough for classroom demonstration
- User friendly
 - Easy to assemble and replace parts
 - Easy to operate
- Dramatically show the effectiveness and toughness of condom
- Under \$100
- Table model

Design Specification

Sticking with the original, adding new improvements.

- Changing the material of the load placed in the condom?
- Similar structure and components, but a more compact and portable model

Preliminary Testing

Beads (left) Water (center) Airburst (right)

Presentation Mechanism

Final Design

Apparatus

Design Alternatives

Presentation Mechanism

Apparatus

Options for demonstration

- Pouring Beads (original)
- Water Dye
- Combination (Beads + Water)
- Free Fall

Design Alternatives

Design Alternative – Presentation Mechanism (I) Pouring Beads

Using the Current Design

Method is proven to work

- Has the necessary dramatic effect
- Can be operated by someone without any prior knowledge
- Can be made visible to a large audience
- Low cost

Problems

- Needs to be rebuilt
- Not the most visually appealing demonstration device
- Assembly is confusing with too many parts

Design Alternative – Presentation Mechanism (II) Water Dye

Easy to see

- Condom can hold more water weight than bead weight, leading to a more impressive display
- Parts can be used from previous design

May be more difficult to operate

- Containing the water could prove to be challenging
- Costly
- Assembly/disassembly time may be a concern

Design Alternative – Presentation Mechanism (III) Combination (Water + Beads)

- Unique display
 - Possibly more visually appealing
- Drawbacks
 - Condom still breaks at low weight, due to presence of beads
 - Clean-up is difficult; separating beads from water

Design Alternative – Presentation Mechanism (IV) Free Falling

A more realistic model

- Dropping metal rods of increasing weight into the condom
- Could lead to a more interactive experience for the students

Problems

- The latex material is quite elastic causing the weight to bounce
- A completely new apparatus would need to be built
- Acceleration due to gravity might not be enough to break the condom with a reasonable weight

Design Matrix (I) Presentation Mechanism

Water Weight + Dye

Criteria were given priority by your client

The defining category was Dramatics

Design Matrix 1: Presentation Mechanism						
Cotogory	Current design	Water Weight	Combination	Free Falling		
Category	(only beads)	(with dye)	(beads + water)	Weight		
Ease of Use (out of 25)	25	22	20	10		
Dramatics (20)	15	19	17	9		
Functionality (20)	15	20	20	15		
Visability (15)	13	14	13	10		
Size (10)	10	7	8	10		
Cost (5)	5	3	2	1		
Assembly/Disassembly Time (5)	3	2	1	3		
Total (100)	86	87	81	58		

Presentation Mechanism Options for Apparatus Folding Poles + Hand Trolley Telescoping Poles + Hand Trolley

Apparatus

Design Alternatives

Design Alternative – Apparatus (I) Folding Poles

Easy Transportation
 Can be folded into a compact space

Problems
Not variable
Not stable

Design Alternate – Apparatus (II) Telescoping Poles

Higher adjustability

- Easy to operate
- More flexible in different height
- Drawback
 - □ Accessibility?

Design Matrix (II) Apparatus

Telescoping Poles + Hand Trolley

Criteria were given priority by your client
 The defining category was Adaptability

Design Matrix 2: Transport Mechanism				
Category	Folding Poles	Telescoping Poles		
Ease of Use (out of 50)	43	43		
Adaptability (25)	20	25		
Size (25)	24	24		
Total (100)	87	92		

Final Design

Requirements/Expectations	Solution	
More dramatic demo	Water	
Higher transportability	Hand trolley + removable tank	
Time-consuming installation	One-piece design	
Releasing water problem	Small drain	
Adaptability to teaching environment	Standing + Table model	
Different breaking points	Telescoping Poles + Marking on the pole at corresponding length	
If water source is not available	Similar design as original	

Design Apparatus

Future Work

Model Material Selections

- Hand trolley (weight)
- See-through tank (dimensions; weight)
- Telescoping poles (extendable length, weight)
- Model Construction
- Condom Testing (different brands)
 - Elongation
 - Maximum weight
 - Stretching shape
- Demonstration in client's class
 - Impression on the students
 - Client's satisfaction

References

- Pease, C. M. & Bull, J. J. (2000). Models of sex in condom testing. http://www.utexas.edu/courses/bio301d/Topics/Condoms/ Text.html
- Wilson, T. V. (2009). How Condoms Work. HowStuffWorks.com. http://health.howstuffworks.com/sexual-health/contraception/ condom.htm

