### MRI Exercise Device

Advisor: Pablo Irarrazaval

Client: Dr. Bill Schrage

### Overview

- MRI Technology
- Design Requirements
- Previous Prototypes
- Alternative Designs
- Design Matrix
- Testing and Future
  Work



## **Project Summary**


- Design an exercise device
- Compatible with an MRI
- Main objective: assess cerebral blood flow responses to exercise



### MRI Exercise

- Want to observe cerebral blood flow during exercise
  - Observe the effects of age and disease states

• MRI is currently the best technology that can make such an assessment



## Primary Design Requirements

- MRI Compatible
- Minimize upper body movement
- Adequately raise heart rate
- Adjustable resistance
- Accommodate varying heights
- Withstand frequent use



## Secondary Design Requirements

- Comfort
- Aesthetics
- Measure work output

Accommodate obese subjects

Easy transport



## **Previous Prototypes**

- Stepper
- Cycle

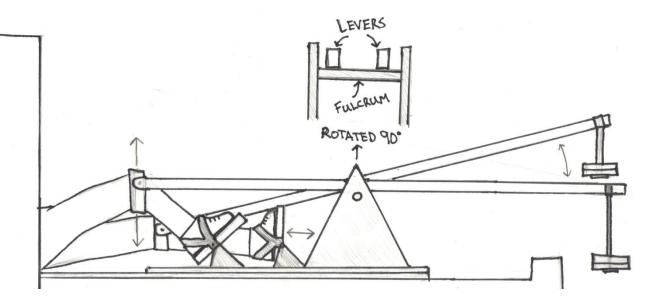


Farrell, Lenz, Maharaj, Yagow. BME Design, 2009.

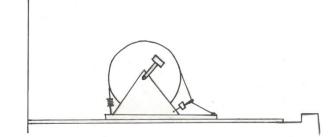
## Alternate Designs

- Lever
- Cycle
- Ferrous Boots

### Lever


Uses a stepping motion, with resistance caused by a movable lever

#### **Pros:**


- Easy to make non-ferrous
- Simple to adjust resistance

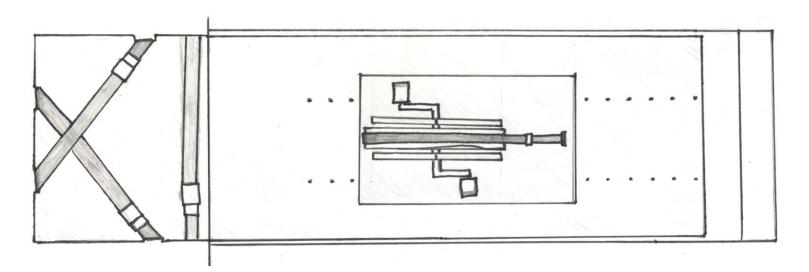
#### Cons:

- Minimal upper body movement •Could be difficult to attach to leg
  - •Relies on very little friction in track and pulleys



# Cycle




Uses cyclic motion to apply constant resistance

#### **Pros:**

- Steady motion
- Resistance adjustment
- Simple Mechanics

#### Cons:

- Larger range of motion needed
- Difficult to construct non-ferrous
- Potential upper body movement



### Ferrous Boots

• Uses the magnetic power of MRI to create resistance

#### **Pros:**

- Very easy to assemble
- Causes constant resistance

#### Cons:

- Interferes with magnetic field
- Could be dangerous
- Harder to stabilize upper body

# Design Matrix

| Criteria                 |        | Possible Designs |       |               |
|--------------------------|--------|------------------|-------|---------------|
| Considerations           | Weight | Lever            | Cycle | Ferrous Boots |
| Constant resistance      | 20     | 18               | 18    | 20            |
| Ease of fabrication      | 10     | 8                | 9     | 10            |
| Adjustability            | 10     | 9                | 6     | 10            |
| Range of motion          | 20     | 16               | 13    | 18            |
| MRI Compatibility/Safety | 20     | 17               | 15    | 2             |
| Upper-body stabilization | 20     | 17               | 15    | 13            |
| Total                    | 100    | 85               | 76    | 73            |

### Testing and Future Work

Order parts and test for MRI compatibility

Fabrication

Test design

## Special Thanks

- Dr. Bill Schrage
- Pablo Irarrazaval
- John Harrell
- Dr. Oliver Wieben
- Dr. Alejandro Roldan
- Dr. Kreg Gruben

Questions?

