Blinking Orbital Prosthesis

Client: Mr. Greg Gion MMS, CCA Advisor: Professor Pablo Irarrazaval

Leaders: Justin Cacciatore & Michael Konrath Communicator: Blake Marzella BWIG: Mike Musser BSAC: Jeff Groskopf

Orbital Prostheses

- Biomechatronics
- Ocular vs. Orbital

- PMMA Polymethyl Methacrylate
- Silicone

Previous Work: Last Semester's Mechanism

Previous Work

- Embedded Cord Tension Mechanism
 - Servo motor with rotating arms operates the mechanism
 - Silicone lid for realistic appearance
 - Closing cord acts as the orbicularis oculi muscle
 - Levator cord replicates the levator muscle

Problem Statement

- Loss of eye and surrounding tissue
 - Disease
 - Injury
 - Genetic defect
- Synchronize the blink of the prosthesis with a healthy eye
- Aesthetically pleasing and realistic appearance

Current Devices

- Has yet to be a fully functional *blinking* prosthetic device.
- Blink can be detected, however:

Muscle signals, brain signals, eye tracking camera, etc.

Client Requirements

- Synchronization
- Working presentation model
- Modify current mechanism
 - Ideally housed in one compact piece
 - Detachable motor box
- Comply to budget of \approx \$500
- Safety

Mechanism Adjustment Mesh Levator Cord Testing

- New Break Load: 750g
- %66 Stronger Cord

Mechanism Adjustment

Motor Bracket

- Incorporated in all synchronization ideas
- •Flat Front of Bracket
 - •Embedded within silicone
- •Back of Bracket
 - •Motor Box to fix motor position
 - •"Power Line" fixtures to guide cords to motor arm

Mechanism Adjustment cont. Motor Bracket Improvements

•Smaller Size

•More Stable

•Greater Tension on Cords

•Less Structural Burden on Silicone

Electromyogram and Electrooculogram

- EMG- potential generated by orbicularis oculi muscle
- EOG potential generated by vertical movement of eyelid
- Three electrodes, long term, dry, surface
- Requires a bio-amplifier

Camera

- Camera focused on the eye
- Image recognition program determines what the open eye looks like, used as template
- When blinking, the image starts to differ from the template
- Has additional hardware requirements

Chau, Michael and Betke, Margrit. "Real Time Eye Tracking and Blink Detection with USB Cameras." Boston University Computer Science Technical Report No. 2005-12. May 12, 2005. PDF.

IR LED and Photodiode

- IR light emitted on eye
- Increased reflection from eyelid
- Voltage in photodiode increases
- Signal sent to Arduino
- Osram IR LED

IR LED and Photodiode

- External interference
- Correct orientation and distance from eye
- Use of glasses
- Easily picks up eyelid movement
- Wide field-of-view with glasses.

Field-of-view area at 20mm

Final Design Selection

Method	Cost	Size	Ease of Use	Safety	Difficulty	Signal Str.	Accuracy	Delay	Weight	Power	Total
Weight	5	5	15	10	10	15	10	15	5	10	100
EOG/EMG	2	2	6	8	5	6	6	12	2	4	53
Camera	4	4	12	10	3	12	8	12	3	5	73
IR-LED	5	5	12	8	9	13	10	12	4	7	85

Pursuing LED/Photodiode design

- Easy implementation with mechanism
- Inexpensive
- EOG
 - Invasive nature
- Camera
 - More complex

Future Work

- Build motor box bracket in the shop or rapid prototyping
- Purchase IR LED Components
- Contact Prof. Bracha for build consultation
- Wire/program Arduino microcontroller

Acknowledgements

Mr. Greg Gion Professor Pablo Irarrazaval Dr. Jim Ver Hoeve Professor Justin Williams Professor Vlastislav Bracha

References

- Chau, Michael and Betke, Margrit. "Real Time Eye Tracking and Blink Detection with USB Cameras." Boston University Computer Science Technical Report No. 2005-12. May 12, 2005. PDF.
- Kaneko, Kenichi and Sakamoto, Kazuyoshi. "Evaluation of Three Types of Blinks with the Use of Electrooculogram and Electromyogram." *Perceptual and Motor Skills* 88, 1037-1052. 1999. PDF.
- Ryan, Steven B., Detweiler, Krystal L., Holland, Kyle H., Hord, Michael A., Bracha, Vlastislav. "A long-range, wide field-of-view infrared eyeblink detector." *Journal of Neruroscience Methods* 152 74-82. 2006. PDF.

