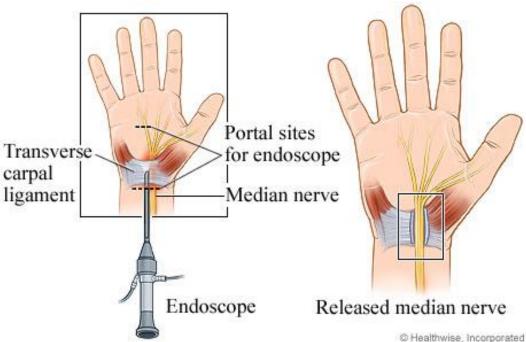
Simulator for Endoscopic Carpal Tunnel Surgery

Team Members: Charles Donaldson, Whitney Johnson, Sarah Switalski, Mason Jellings

> **Clients:** Dr. Robert Radwin Dr. Ben Mandel, MD

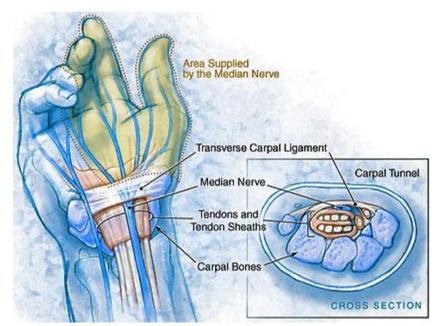

Advisor: Professor Willis Tompkins

Overview

- Endoscopic Carpal Tunnel Surgery
- Problem Statement
- Client Requirements
- Current Devices
- Design Alternatives
- Design Matrices
- Testing and Future Work

Endoscopic Carpal Tunnel Surgery

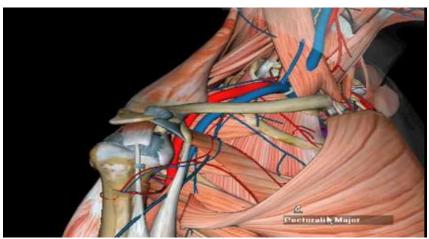
- Minimally-invasive
- Relieves pressure on median nerve
 - Cuts transverse carpal ligament
- Uses optical camera and trigger activated blade
- Feel and vision used for accuracy during surgery


Problem Statement

- Design a simulator for endoscopic carpal tunnel release surgery
- Life-like physical hand model

Interface to 3D anatomical software
 Tracking device

Client Requirements-Hand Model


- Life-like feel/appearance
 - Skin–like exterior
 - Restrictive carpal tunnel
 - Corrugations of transverse carpal ligament
- Resistance felt when ligament is "cut"
- Robust: must withstand repeated simulations

http://www.repetitive-strain.com/ctsindex.html

Client Requirements-Tracking Device

- Degrees of freedom
- Imm movement precision
- External devices must not interfere with surgical procedure
- Interface with anatomical 3D environment
 - Currently in development

http://gestalta.net/index.php?key=Elsevier

Current Devices

- Open source technology allows for haptics, visualization, real-time simulation
 - Chai 3D
- Non-lifelike models provide haptic feedback, virtual visualization
 - TrEndo
 - SIMENDO

http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2211365/figure

Current Devices

- Hybrid Model


 Interaction between virtual and physical models
 ProMIS
- Tracking Devices
 Mechanical
 Optical
 - Electromagnetic

www.haptica.com/promis-surgical-simulator.html

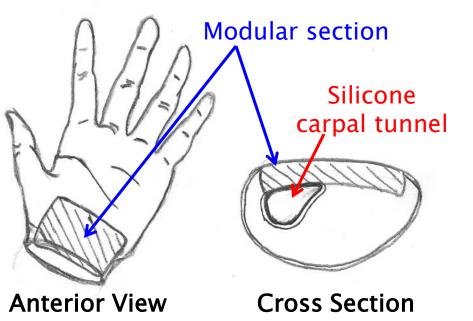
Hand Model Design 1 3D Printing

- Mold based off 3D CAD model
 - 3D model from CT scan
- High anatomical detail
- Polymers
- High cost due to complexity, size (\$1500)

http://www.rhinoreverse.icapp.ch/english/ gallery.html

http://www.itg.uiuc.edu/printing/3D/

Hand Model Design 2 Alginate/Ballistics Gel


- Alginate cast of hand
- Ballistics Gel
 - Texture similar to human tissue
- Negative space for carpal tunnel
 - Can imbed carpal bones, fibers
- Cost
 - Minimal
- Reduced durability

http://www.indymogul.com/backyardfx/post/1972/build-plans-how-to-make-a-fake-hand

Hand Model Design 3 Silicone

- Silicone carpal tunnel tube suspended in gel
- Corrugated transverse carpal ligament
- High durability
 - Modular palmar section
- Greg Gion
 - Medical Art Prosthetics
 - Cost = \$300

Design Matrix for Hand Models

Criteria		Design Alternatives			
Category	Weight	3D Printing	Alginate/ Ballistics Gel	Silicone	
Resistance / Haptics	40	30	28	35	
Anatomical Accuracy	10	10	6	8	
Durability	25	23	5	23	
Aesthetics	15	12	8	14	
Cost	10	3	10	8	
Total	100	78	57	88	

Tracking Device Design 1

Track Ball(s)


Positives

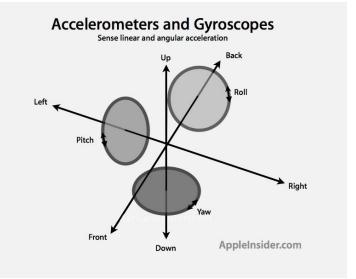
- Direct connection to computer
- Ease of interface with "endoscope view"

Negatives

- Limited degrees of freedom
- Poor contact
- Size
- Sacrifices haptics

http://www.berryreporter.com/2009/03/03/coloredtrackballs-now-available-blue-purple-red-yellow-andblack/

Tracking Device Design 2


Accelerometer/Gyroscope

Positives


- Provides required degrees of freedom
- Initial size

Negatives

- Total size
- Limited accuracy/sensitivity
- Signal processing/connectivity

 $\label{eq:http://www.appleinsider.com/articles/10/06/16/inside_iphone _4_gyro_spins_apple_ahead_in_gaming.html&page=2$

http://www.ebaheth.com/home /index2.php

http://commons.wikimedia.org/wiki/ File:3D_Gyroscope-no_text.png

Tracking Device Design 3

Wii Remote

Positives

- Provides required degrees of freedom
- Completely wireless
- Established signal processing libraries

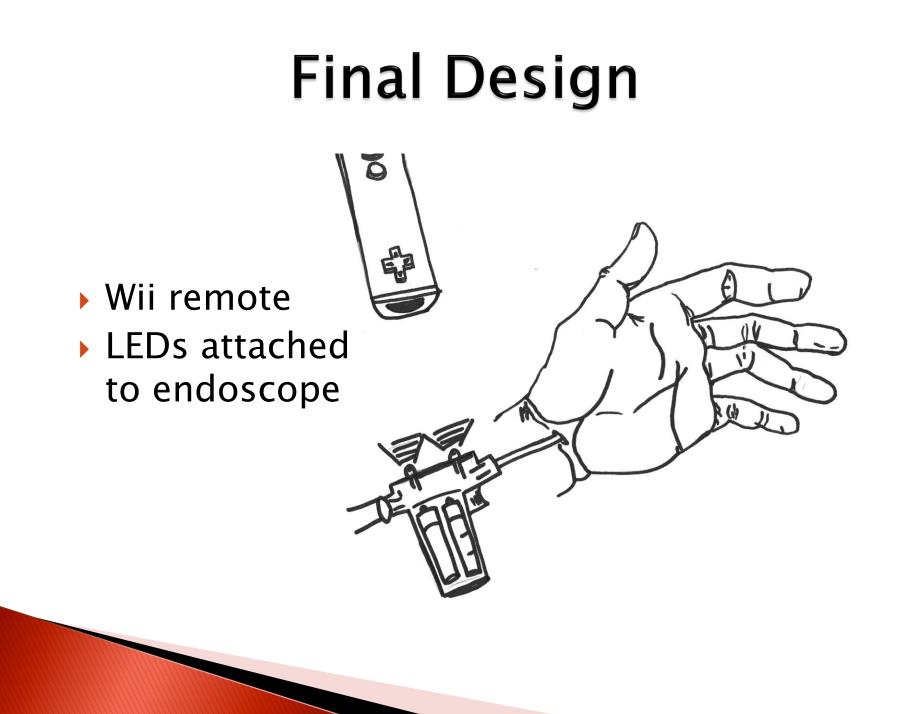
Negatives

- Powering LED's
- Possible obstruction

9

. . . .

Wiii.



http://www.bidorbuy.co.za/i tem/15868570/_WOW_GENU INE_NINTENDO_Wii_REMOTE. html

http://hpeetronics.com /hpee.html

Design Matrix for Tracking Devices

Criteria		Design Alternatives			
Considerations	Weight	Wii Remote	Accel/Gyro	Trackball	
Size	22	20	12	14	
Signal Processing	25	15	5	25	
Degrees of Freedom	20	17	20	8	
Ergonomics	28	25	14	20	
Cost	5	3	3	5	
Total	100	80	54	72	

Future Work

Fabricate hand model

- Greg Gion at Medical Art Prosthetics
- Integrate tracking device with software and endoscope
- Test position accuracy of tracking device
- Determine and create correct resistance feedback

References

[1] Vasiliadis, H., Xenakis, T., Mitsionis, G., Paschos, N., & Georgeoulis, A. (2010). Endoscopic versus open carpal tunnel release. *Arthroscopy*, 26(1), 26.

[2] Williams, M. (2010). How does the Wii remote work? Retrieved from http://www.ehow.com/how-does_4895604_wii-remote-work.html.

[3] Lee, J. (2008). Hacking the Nintendo Wii remote. *Pervasive Computing, IEEE*, 7(3), 39–45.

- [4] Zheng, Y., Li, Z., Chen, X., Lu, M., Choi, A., et al. (2006). Ultrasound palpation sensor for tissue thickness and elasticity measurement-assessment of the transverse carpal ligament. *Ultrasonics*, 44.
- [5] Chmarra, M., Bakker, N., Grimbergen, C., & Dankelman, J. (2006). Trendo, a device for tracking minimally invasive surgical instruments in training setups. *Sensors and Actuators A-physical*, 126(2), 328-334.

[6] www.igstk.org/IGST/img/Tracker-IJCARS-FindSubmission.pdf

Questions?

