

Assistive Transfer Device

<u>Team</u>

Luisa Meyer(Leader)Sarah Springborn(Commun.)Gerhard van Baalen(BSAC)Scott Sokn(BWIG)Bucky(Inspiration)

<u>Clients</u> Diana Eastridge, RN, CNP Lisa Kaikuanna, RN

<u>Advisor</u> Professor Thomas Yen, PhD

OUTLINE

I. Problem Statement

- i. Need for Device
- II. Design Specifications
 - i. Background
- III. Review of Previous Design
 - i. What went wrong?
 - ii. Where can we improve?
- IV. Design Analyses
- v. Future Work
 - i. Design/Fabrication
 - ii. IRB

PROBLEM STATEMENT

 Safely transfer patients from wheel chair to exam table

 Patients should feel secure while lifted

 Reduce Physical exertion of both patient and medical personnel

CURRENT LIFTING METHODS

Manual Labor

- Method
 - Assistant wraps arms around patient
 - Holds patient while slowly rotating toward table
 - Hoists patient onto exam table

Risks

- Large effort from assistant
- Uncomfortable for patient and assistant
- Dependent on assistant strength

Hoyer Lift

- Mostly for Wheelchair-bound patients
- Have to get sleeve underneath patient

http://www.corpmed.com/images/patient-transfer.jpg

SPECIFICATIONS

• Able to lift 300 lbs.

- (Safety factor of 2x)
- Lift 10-15 in.
- Rotate Patient
- Portable
 - Device < 50 lbs. or on wheels)</p>
- Easy Storage
- Under a bed/behind a door/ against a wall
 Stable

SPRING '10 DESIGN

• Limitations

- Can only help patients able to stand with assistance of nurse or walker
- Initial Step up is 3.5 in.
- Friction in joints require oiling
- Total Weight is 60 lbs.

Issues to improve

- Mechanical advantage of actuator
- Reduce Extrusions (wheels and cylinder)
 -ideally fitting both underneath device
- General Stability during ascent and descent
- Binding issues of scissor-links

VALLEY CONCEPT

Reduces Step height Increases Mechanical advantage

POSSIBLE GEOMETRIES

DESIGN CONCEPTS

Hydraulic Actuator

Premade Electric Car Jack http://www.m-99.co.uk/Electric_Car_Jack/electric_car_jack.html

Electric Motor - Drive Shaft

LIFTING METHODS

	Cost	Feasibility (x2)	Storage	Design Variability (x2)	Safety	Total
Hydraulics	1	4	4	5	4	18
Premade						
Electric Jack	4	8	1	4	4	21
Drive Shaft	2	5	4	8	4	23

FUTURE WORK

 Perform force calculations on SolidWorks model

- Calculate motor torque
- Order Materials
- FabricateApply for IRB

PARAMETER RESEARCH

Step Height

- Stair heights range from 6 1/2" to 9 1/2" [4]
- Elderly women range of motion of about 59.23 ± 13.77° [2]
- Maximum knee flexion during an 8" step is 90.8° [5]
- A study showed that 80% of the women tested (ages 75-93) were able to step up higher than 20 cm (7.87")[1]

Stance

• Stance width ranges from 0.05 m to 0.29 m (2" to 11.4")[3]

DESIGNING OUR OWN EXPERIMENT

Target population: nursing homes

Significance:

- Maximum step height
- Stance Width

Social Science IRB ApprovalSurvey for elderly people

- Test different step heights
- Rate on comfort/difficulty

DOES ANYONE HAVE QUESTIONS?

[1] Bergland A, Sylliaas H, Jarnlo GB, Wyller TB. Health, balance and walking as correlates of climbing stairs. *J of Aging and Physical Activity*, 2008;16:42-52.

- [2] Larsen AH, Sorensen H, Puggaard L, Aagaard P. "Biomechanical determinants of maximal stair climbing capacity in healthy elderly women." Scandinavian J of Med & Science in Sports, 2009;19:678-686.
- [3] Mcllroy WE and Maki BE. "Preferred placement of the feet during quiet stance: development of a standardized foot placement for balance testing." *Clinical Biomechanics*, 1997;12:66-70.
- [4] Occupational Safety and Health Administration. Standard 1910.24(e). http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards &p_id=9716>.
- [5] Smutnick JA, Bohannon RW. "Hip and knee flexion of lead and trail limbs during ascent of a step of different heights by normal adults." *Phys Ther*, 2009;95:289-293.