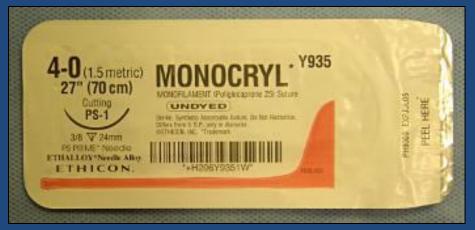
Absorbable Staples for Uretero-Intestinal Anastomosis

Matthew Bollom, Vanessa Grosskopf, Samantha Paulsen, Jeff Theisen

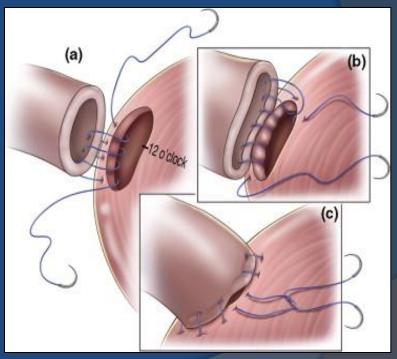
Overview

- Project Background
- Motivation and Problem Statement
- Ourrent Devices
- Design Specifications
- Material Choice
- Staple Designs
- Future Work

Bladder Cancer


- 5th most common cancer in United States ¹
- Most expensive over time
- Treatment when cancer invades muscle: radical cystectomy ²
 - Urostomy bag
 - Neobladder

Motivation & Problem Statement


- Ureters attached to new bladder via absorbable sutures
- Lengthy procedure
- Inconsistency between surgeons
- Metal staples cause stones
- Minimize subsequent interventions

Current Devices

Sutures

http://www.bernsteinmedical.com/resources/publications/a-new-suture-for-hair-transplantation-poliglecaprone-25/

http://www.europeanurology.com/article/S0302-2838(08)01513-3/fulltext

Current Devices

Anastomosis Circular Staplers (Ethicon, Covidien)

- Circular placement
- Titanium staples
- Too large for ureters

http://www.ees.com/Clinician/Product/stapling/circular-intraluminal#videos-media

Current Devices

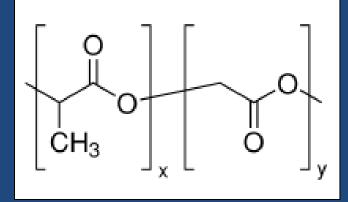
Absorbable Staples (Insorb, Covidien)

- Linear placement
- PLGA

http://insorb.com/documents/IFU_English_20xx.pdf

Design Specifications

Biocompatible

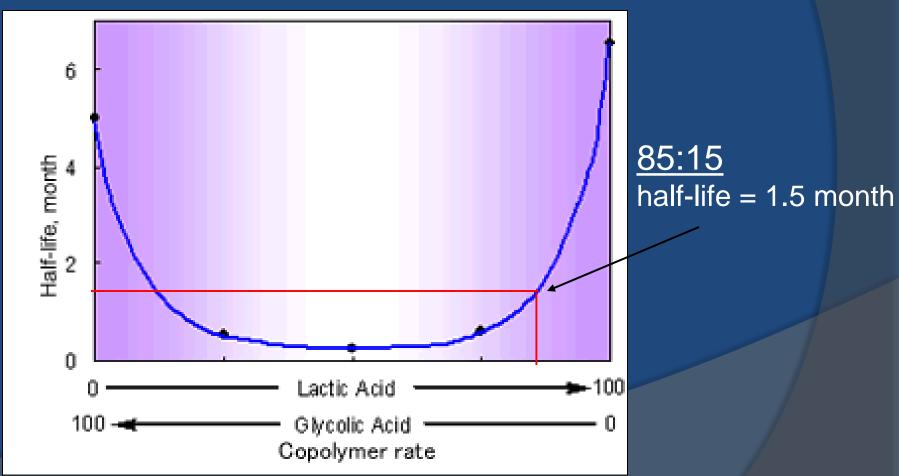

- Secures ureter to neobladder for a minimum of 30 days
- Able to create water-tight seal
- Withstands bladder environment
- Does not damage surrounding tissue
 Sterile

Material Selection

- Common Absorbable Polyesters
 - Poly(lactic acid), poly(glycolic acid) and copolymers
 - Polycaprolactone (PCL)
 - Polydioxanone (PDS)
- Previous applications include:
 - Staples
 - Sutures
 - Stents

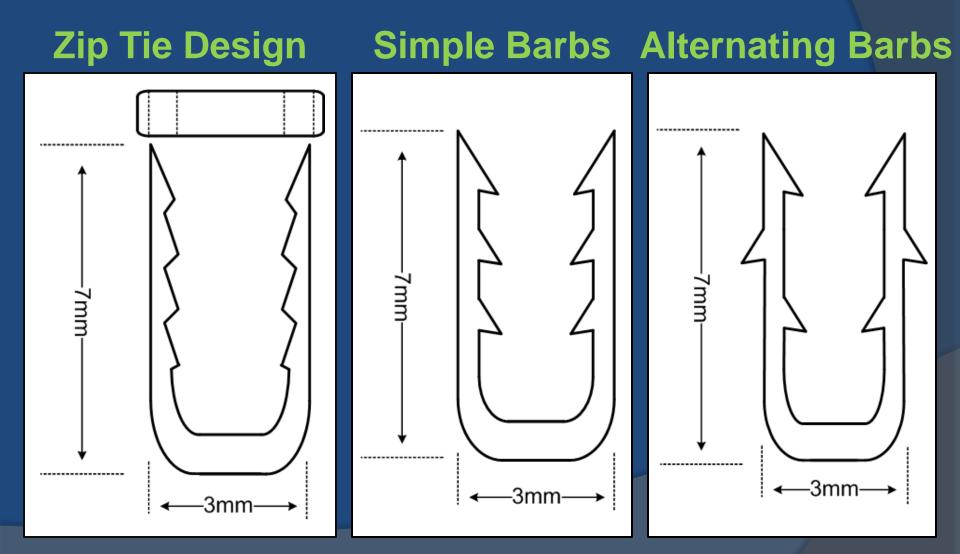
Material Selection

Poly(lactide-co-glycolide) – PLGA



- Used in INSORB and POLYSORB staples
- Degradation rate and mechanical strength variable based on molar ratio
- Copolymer more consistent than PLA/PGA blend

http://www.sigmaaldrich.com/materialsscience/material-science-products.html


Material Selection

PLGA degradation rate vs. molar ratio

http://www.wako-chem.co.jp/specialty/plga/index.htm

Staple Designs

Future Work - Testing

- Tensile Strength Testing
- Degradation Testing
 - Mimic tissue environment using gelatin with buffer
 - Various pH (Urine range 4.5 8)
- Functional Testing
 - Create anastomosis similar to actual surgery
 - Measure burst strength
- All testing of staples will be compared against sutures currently in use

Future Work - Fabrication

Compression molded plate of PLGA

- Desired staple thickness
- Necessary to have a "2D" design
- Out out staple design with laser cutter
- Fabrication method testing
 - Verify with PLGA using material samples
 - Verify parameters such as frequency, power, and speed
 - Verify staple design

http://www.woodlaserengraver.co m/2010/10/26/laser-cutter-2/

Future Work - Stapler

Stapler head designed by previous team.

Acknowledgments

- Or. Tracy Downs
- Professor Tompkins
- Professor Murphy
- Professor Turng
- Professor Puccinelli
- Purac Biomaterials

References

 Bladder Cancer. National Cancer Institute. Retrieved October 17, 2011, from http://www.cancer.gov/cancertopics/types/bladder
 Bladder Cancer. U.S. National Library of Medicine. Retrieved October 17, 2011, from http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001517/

Questions?