Incremental Advance Drill Stop

Team Members Lucas Schimmelpfenning Kevin McConnell Brandon Jonen Joseph Benert

Client Dr. Tim O'Connor Advisor Christopher Brace

Motivation and Background

- Dr. Tim O' Connor
 Resident in Orthopedic
 Surgery at the UW
 Hospital
- Concerned with tissue damage caused by drilling
- Current method relies on auditory feedback and feel

http://www.orthopedicproductguide.com/bguide/User/

Problem Statement

- Prevent over penetration of orthopedic drilling
- Reduce/eliminate tissue damage behind the bone

Current Devices

Drill Sleeve
Not adjustable

http://www.alibaba.com/product-free

Spinal Drill Guide
 -Only adjustable prior to drilling

- Neurosurgery Bit
 Outer and inner bit
 - -Pressure on inner bit spins outer bit
 - -Prevents tissue damage

http://www.acracut.com/perforators.html

Previous Semester Design

- Trigger Mechanism (caulk gun)
- Metal tube holds drill bit
- Metal plates and springs
- Plates act as clutches
- Friction holds tube in place (in theory)

Client Requirements

- No slippage of tube-prevent all plunging
- Incremental advance of 1-2 mm
- Reduce heat exposure to bone
- Eliminate measuring step during drilling
- Easy reset mechanism
- Ergonomics

Trigger design modification

- Modifies current design
- Trigger pins and notches
- Easier reset mechanism

Mechanical Pencil Design

- Clamp chuck and chuck ring
- Trigger propulsion
- Spring return mechanism

Thumbwheel design

- Thumbwheel turns worm gear
- Thumbwheel both advances and retracts tube

http://science.howstuffworks.com/ transport/engines-equipment/gear5.htm

Design Matrix

Category (weight)	Current Device	Mechanical Pencil	Worm Gear
Advance in 1-2 mm Increment (3)	5	7	9
Prevention of Slipping(3)	3	5	10
Ease of Reset (2)	3	6	8
Ability to Calibrate (1)	8	9	10
Cost (1)	9	9	5
Total (out of 100)	47	66	88

Key Categories

	Current Device	Mechanical Pencil	Worm Gear
Advance in 1-2 mm Increment	5	7	9
Prevention of Slipping	3	5	10

	Current Device	Mechanical Pencil	Worm Gear
Total	47	66	88

Future Work

- Meet with worm gear expert
- Order and fabricate parts
- Create Prototype
- Test

Special Thanks

Dr. Tim O'Connor Professor Brace Andy LaCroix

References

- Kendoff D, Citak M, Gardner M, Stübig T, Krettek C, Hüfner T. Improved accuracy of navigated drilling using a drill alignment device. *Journal of Orthopaedic Research* [serial online]. July 2007;25(7):951-957. Available from: Academic Search Premier, Ipswich, MA. Accessed October 19, 2011.
- ACRA-Cut. ACRA-Cut Smart Drill: Oct 17, 2011. http://www.acracut.com/perforators.html

