MRI CARDIAC EXERCISE DEVICE

Team members: Andrew Hanske, Leader Nick Thate, Communicator Evan Flink, BSAC Tongkeun Lee, BWIG

Client: Prof. Naomi Chesler, Department of Biomedical Engineering Advisor: Prof. Willis Tompkins, Department of Biomedical Engineering

<u>Outline</u>

- Problem Statement
- Background Information
- Competition / Past BME Designs
- Previous Prototype
 - Design, Testing, and Problems
- Lateral Arm Stability Designs
- Securing Patient to Device Designs
- Additional Design Improvements
- Future Work
- Acknowledgements / References

Problem Statement

- Design an exercise device to be used in cardiac MRI scans in order to diagnose and assess pulmonary hypertension
- Client requirements
 - MRI compatible materials
 - Exercise within the bore
 - Comfortable supine exercise motion
 - Minimal upper-body movement
 - Sufficient resistance to increase cardiac output
 - Adjustable workloads
 - Reasonable size and weight

Background Information

- Pulmonary Hypertension
 - Abnormally high blood pressure in pulmonary arteries
 - Decreased artery diameter
 - Enlarged right ventricle
 - Decreased systemic blood [O₂]
- Traditionally assessed with invasive procedure

Narrowing of pulmonary artery Enlarged right ventricle

> http://health.allrefer.com/health/primarypulmonary-hypertension-primary-pulmonaryhypertension.html

Competition

- Lode B.V. MRI Ergometer
 - Expensive (> \$28,000)
 - Cycling motion
 - Cannot exercise in bore during chest scans
- MRI-compatible treadmill
 - Developed at Ohio State University
 - Exercise occurs outside of the MRI tube
 - Less accurate results

http://www.lode.nl/en/pr oducts/mri_ergometer

http://www.medcitynews.com/2009/0 5/commercialization-ramps-up-onohio-state-university-treadmill-usedfor-mri-heart-tests/

Past BME Designs

- MRI Lower Leg Exerciser
 MRI Leg Exercise Device
 - Spring 2010
 - Excess friction
 - Insufficient workload

- - Fall 2010
 - Unnatural loading
 - Bulky

Previous Prototype: Design

Previous Prototype: Testing

- Used 6.77 kg additional mass per leg
- Worked at a cadence of ~130 steps/min
- Equivalent to ~62 Watts
- Tests lasted 10 minutes
 - Maximum heart rate measured via pulse oximeter

Subject	Resting HR (bpm)	Exercising HR (bpm)	% Max. HR
1	65	130	65.33
2	62	128	64.32
3	62	118	59.30
4	58	146	73.37
Average	61.75	130.50	65.58

Previous Prototype: Problems

- Durability of the prototype
- Lateral lever arm stability
 - Lateral foot movement
 - Bearings
- Compatibility with the sliding MRI couch
- Device and subject movement
- Size
- Sliding weights

Lateral Lever Arm Stability Design: Track-Guided

 Extension on arm moves through external track

Pros:

Cost-effective

Cons:

- Friction
- Indirect solution

Lateral Lever Arm Stability Design: Block

- Two bearings housed in block
 - Provides even support
 - Secures bearings

Pros:

- Reduces friction/wear
- Limits lateral motion
 Cons:
- Additional bearings

Lateral Lever Arm Stability Design: Arc-Support

Support arms provide increased interface with bar

Pros:

- Limits lateral motion
- Cost-effective

Cons:

- Durability concerns
- Friction

Lateral Lever Arm Stability Design: Design Matrix

Weight	Criteria	Track-Guided	Block	Arc-Support
0.4	Effectiveness	4	8	9
0.4	Durability	5	9	6
0.1	Ease of Assembly	7	8	6
0.1	Cost	8	6	8
	Weighted Total:	5.1	8.2	7.4

Securing Patient to Device Design: Extended Base

 Elongated base with padded shoulder supports

Pros:

Effective

Cons:

- Bulky
- Expensive

Securing Patient to Device Design: Backpack Straps

 Shoulder straps secure patient to device

Pros:

- Comfortable and effective
- Light-weight

Cons:

Restrictive

Securing Patient to Device Design: Velcro Yoga Mat

 Velcro belt attaches to underlying yoga mat

Pros:

Light-weight

Cons:

Less comfortable

Securing Patient to Device Design: Design Matrix

Weight	Criteria	Extended Base	Backpack Straps	Velcro Yoga Mat
0.25	Effectiveness	9	9	6
0.2	Patient Comfort	7	8	6
0.15	Size/Weight	3	9	8
0.15	Durability	7	7	5
0.15	Safety	10	8	7
0.1	Cost	5	7	6
	Weighted Total:	7.15	8.15	6.3

Additional Design Improvements

- More comfortable hand straps
- Foot straps
- Decreased lever arm length
- Tracking under base
 - Compatible w/ couch movement
- Stopping mechanism
- Threaded aluminum rod
- Improved weight interface

Future Work

- Order new materials
- Salvage/recycle older components
- Construct and assemble new prototype
- Test effectiveness of prototype
- Test compatibility of prototype with MRI
- IRB approval
- Acquire pulmonary arterial blood pressure data through MRI scans before, during, and after exercise
 - Varied subject demographics

Acknowledgements

- Prof. Naomi Chesler
- Prof. Willis Tompkins
- Dr. Alejandro Roldan
- Dr. Oliver Wieben
- Prof. Darryl Thelen
- Jarred Kaiser
- Previous BME Design Teams

References

- Blaivas, A.J. (2010, April 27). Pulmonary hypertension. Retrieved from http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001171/
- Lode B.V. (2008). *MRI Ergometer*. Retrieved from http://www.lode.nl/en/products/mri_ergometer
- McGuire, J., et. al. (2010, December 10). *MRI exercise device*. Retrieved from http://bmedesign.engr.wisc.edu/websites/project.php?id=332
- Murray, A. (2009, May 14). *Ohio state team creates new company based on university invention*. Retrieved from http://www.osu.edu/news/newsitem2425
- Yagow, D., et. al. (2010, May 6). An MRI-compatible lower-leg exercising device for assessing pulmonary arterial pressure. Retrieved from http://bmedesign.engr.wisc.edu/websites/project.php?id=29