BME 400 - Silicone Oil Applicator

Team : Kimberli Carlson-*Leader* Tian Zhou-*Communicator* Claire Wardrop-*BSAC* Ryan Nessman-*BWIG*

Clients: Dr. Richard Galgon Dr. George Arndt

Advisor: Professor Amit Nimunkar

Overview

Background

• Designs

- Problem Statement
- Existing Devices
- Design Specifications

- Design Matrix
- Final Design
- Future Work

Background

- Silicone oil aerosol spray is widely used as a lubricant in medical industry.
- Used by anesthesiologists
- Lubricant applied to inside and outside of tubes during operations

Figure 1 – RUSCH silicone oil lubricant aerosol spray ("Rusch Silkospray", 2011)

Some Devices Needing Lubrication

- Fiber optic bronchoscopes
- Single and double lumen endotracheal tubes
- Airway exchange catheters
- Aintree intubation catheters
- Laryngeal mask airways
- Bronchial blockers

Figure 2 – Bronchoscope

Problem Statement

- Current method of application causes:
 - Slippery work environment
 - Risk for cryogenic burns
 - Release of particles into air that can be inhaled
- A different effective method of applying the silicone oil lubricant is sought.

Existing Devices

Figure 3 – Brush applicator for silicone oil lubricant (Tool Shack, 2011)

- Do not work with lubricant UW hospital uses
- Expensive

Figure 4 – Syringe Lubricant Applicator (High Island Health, 2011)

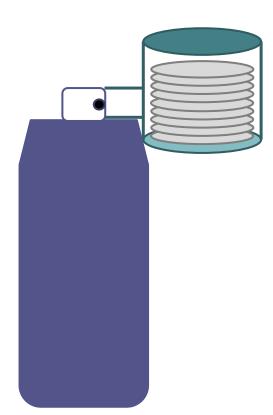


Figure 5 – Automatic silicone oil spray chamber (McClellan Automation System, 2011)

Motivation & Client Requirements

- Eliminate/reduce potential hazards in the OR
- Compatible with the current spray
- Coat inside and outside of a tube/scope
- Portable

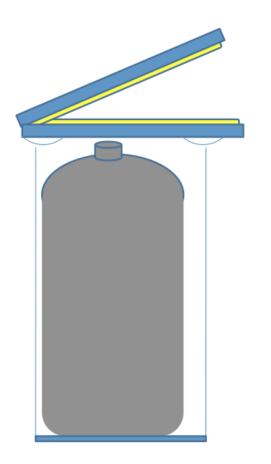
Design I: Disposable Pads Design

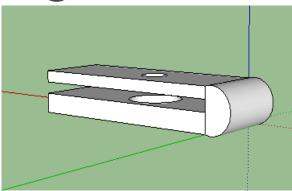
Detachable piece with pre-made pads to lubricate the scope

A flexible rod with a hook to attach the pads to reach inside of a tube

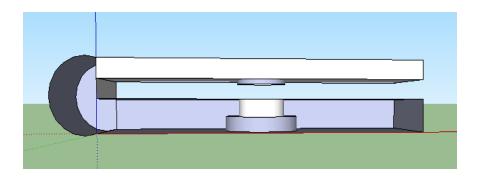
The piece is mounted to the can with an adapter

Design I: Evaluation


• Pros:


- Works with current spray
- Can lubricate inside and outside
- Minimizes overspray
- Cons:
 - Hard to use hook
 - Potential contamination concerns
 - Pressure concerns

	mmm


Figure 6 – The disposable pad design

Design II: Clamp Design

3D image of the clamp adaptor: pads fit in the middle of the clamp

A clamp adaptor with stripe to prevent tipping

Side view of the clamp: the lubricant shoots out from the bottom of the clamp

Design II: Evaluation

• Pros:

- Works with current spray
- Adequately covers outside of tubes
- Reduces/removes overspray
- Cons:
 - Need to replace sponges
 - Cap would need to be redesigned

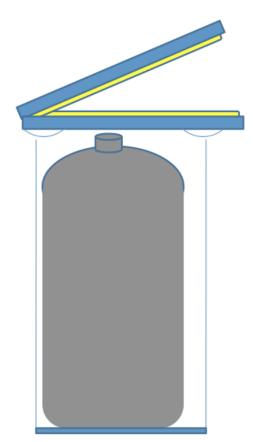
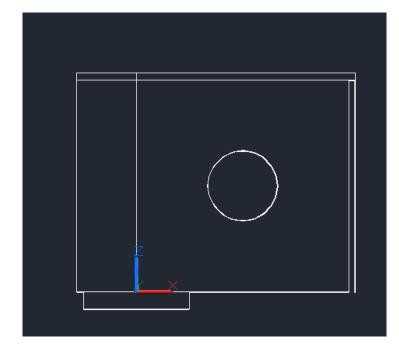
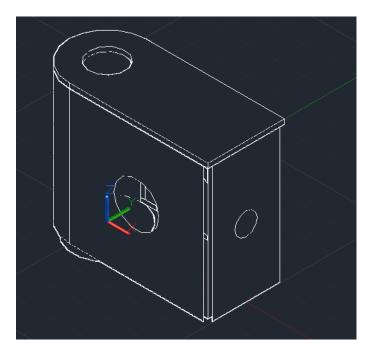




Figure 7 – The clamp design

Design III: Enclosed Box Design

Side view of the box: the lubricant aerosol spray is enclosed inside of the box

3D image of the box: 2 holes on the sides for lubricating the outside of a scope; and 1 hole in front of the aerosol spray for lubricating the inside of a tube.

Design III: Evaluation

• Pros:

- Works with current spray
- Minimizes overspray
- Can lubricate inside and outside

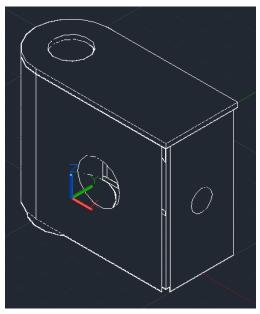


Figure 8 – The enclosed box design $\,$

• Cons:

Spray might not coat inside of a tube adequately

Design Matrix

Criteria	Possible Designs			
Considerations	Weight	Disposable	Clamp	Enclosed
		Pads		Box
Compatibility with container	20	14	14	20
Contain spray	20	20	16	18
Ease of use	10	8	7	9
Portability	10	7	9	9
Ability to coat inside of a tube	20	15	10	18
Ability to coat outside of a tube	20	20	20	20
Total	100	84	76	94

Final Design - The Enclosed Box

- Connects to can using same mechanism as cap
- Allows coating of inside and outside of tubes
- Removes overspray

Figure 9 – Gasket to cover hole

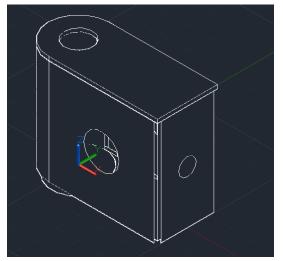


Figure 10 – The box design (a different side view)

Future work

- Determine materials for final product
- Finalize 3D AutoCAD drawing
- Manufacture prototype
- Testing device

References

- 3M. (2010). "Material Safety Data Sheet for Silicone Lubricant."
 - <a>http://multimedia.3m.com/mws/mediawebserver?mwsId=SSSSSuUn_zu8looxl8_BPxm1Ov70k17zHvu9lxtD7SS>
- Betco. (2007). "Material Safety Data Sheet for Silicone Spray Lubricant."
- <http://www.betco.com/MSDS/045.pdf>
- Camp, D., Ateaque, A., Dickson, W. A. (2003). "Cryogenic burns from aerosol sprays: a report of two cases and review of the literature." *British Association of Plastic Surgeons*. 56: 815–817. doi:10.1016/j.bjps.2003.08.009
- Conrad, F. (1994). "Surgical and other aerosols-Protection in the operating room." *Professional Safety*. 39.8: 28. Proquest Research Library. Retrieved 22 September 2011.
 http://search.proquest.com/docview/200434141?accountid=465
- Dupont. (2011). "DuPont "Teflon" Pure Silicone Lubricant Aerosol." Dupont Safety Data Sheet. http://www2.dupont.com/Products_and_Services/en_AU/assets/downloads/dcse%20msds/teflon%20lubes/Pure%20silicone%20lube%20MSDS.pdf>
- Grimes, C., Aughwane, P., Klein, M. (2010). "A reaction to silicone spray." *Endoscopy*. 42: E128. doi: 10.1055/s-0029-1243985
- High Island Health. (2011). "Lubricant Applicator." http://www.highisland.com/detail.php?bid=&productid=7
- IMS Company. (2011). "Material Safety Data Sheet for Silicone Grease Lubricant." http://www.imscompany.com/msds/100585-100586-100830.pdf>
- Lacour, M. and Le Coultre, C. (1991). "Spray Induced Frostbite in a Child: A new hazard with novel aerosol propellants." *Pediatric Dermatology*. 8:207-209.
- LPS. (2011). "Material Safety Data Sheet for Heavy Duty Silicone Lubricant." http://www.lpslabs.com/technical_info/msds/11516.pdf>
- McClellan Automation Systems. (2011). "Silicone Oil Atomization Spray Chamber." < http://www.mcclellan-automation.com/>
- Moser, S. (1999). "Aerosol-Induced Frostbite Injury." *Resource Library-The CBS Interactive Business Network*. < http://findarticles.com/p/articles/mi_m0689/is_9_48/ai_59407920/>
- (2011). "Rusch Silkospray." Teleflex Medical Inc. <www.teleflex.com>
- Silicone and Silicon. (2006). Accessed 21 September 2011. http://www.silicon-silicone.com/
- Tool Shack. (2011). "Ken Tool Bead Lubricant Applicator." < http://www.toolshackanaheim.com/SearchResults.asp?mfg=Ken-Tool>
- Valencia, et al. (2006). "Lubricant for conveying containers." United States Patent. Patent #US2006/0211582A1.

Questions?

