Pinch Meter

Team Members: Catharine Moran- Communicator Andrew Pierce- Team Leader Myranda Schmitt- BWIG Michael Stitgen- BSAC

Team Advisor: John Webster, PhD Department of Biomedical Engineering

Client Information

- Elizabeth Bourne
- Occupational Therapist-Clinician
- Department of Rehabilitation- Medical/Surgical
- UW Hospital

Problem Statement

- Measure different types of pinches
- Easy-to-view digital display
- Accurate and Precise measurements

Points of Interest

- Client Information
- Background
- Problem Statement
- Competition
- Alternative Designs
- Design Matrix
- Design Criteria
- Final Design
- Conclusions
- Questions

Background

- Approximately 800,000 strokes every year in the United States ("Stroke" 2006)
- Strokes may impair motor function
- The goal of stroke rehabilitation is to restore fine motor control ("Post-Stroke" 2008)
- Pinch meter dynamometers are used to measure the strength of fingers
- Two different pinches are conducted
 - Two finger
 - Three finger

Design Criteria

- Display forces from 0 to 5lbs (2.27kg) in 0.2lb (0.091kg) increments
- Portable
- Weight must not exceed 2lbs (0.91kg)
- Service Life: 2-5 years
- Costs less than \$100

Competition

- Many companies produce hydraulic and digital pinch force dynamometers (Pinch Gauge 2008)
- Accurate devices with high force measurement ranges
- Average price of competitors \$200
- Not tailored to stroke victims

Design Alternatives Continued...

Microcontrollers

- Mbed
- Arduino

http://en.wikipedia.org/wiki/Mbed_microcontroller

Alternative Designs

Circuit System

- Modifying a Bathroom Scale
- Developing systems from components Housing
- 3D printer
- PVC box
- Computer
- Force Sensor
- Force Resistive Sensor
- Load Cell
- Piezoresistive Sensor

Phidgets Micro Load Cell <http://www.phidgets.com/products.php?category=3&product_id=3 134>.

Circuit Design Matrix

Circuit Designs							
	Weight	Modified Scale	From Components				
Reliability	1	4	4				
Cost	1	2	5				
Ease of Assembly	.75	3	3				
Functionality	1	2	5				
Availability	.5	5	5				
Total		12.75	18.75				

Housing Option Matrix

	Weight	3D printer	Computer	PVC Box
Reliability	1	4	5	5
Cost	1	5	5	3
Ease of Assembly	.5	5	3	2
Functionality	1	4	2	2
Availability	.5	4	1	5
Total		17.5	14	13.5

Force Sensor Matrix

	Weight	Force Resistive Sensor	Load Cell	Piezoresistive Sensor
Reliability	1	1	5	5
Cost	1	5	1	3
Ease of Use	.5	4	3	4
Accessibility	.5	5	2	5
Total		10.5	9.5	12.5

Final Design

- Piezoresistive sensor
- needs amplification system
- Mbed microcontroller
- Display output on LCDCreate housing using 3D printer

Future Work

- Acquire appropriate materials
- Test and calibrate circuit
- Programming
- Assemble device
- Clinical Trials

Conclusions

- Improve pinch force measurements in a low range of forces
- Allow for more accurate assessment of stroke rehabilitation progress
- Create a more cost effective design

Acknowledgements

- Elizabeth Bourne
- John Webster, PhD
- Amit Nimunkar, PhD

Questions

References

"Pinch Gauge Instructions." 2008. *Baseline Evaluation Products*

"Post-Stroke Rehabilitation Fact Sheet". 2008. National Institute of Neurological Disorders and Stroke (NINDS). Accessed 19 Oct. 2011.

<http://www.ninds.nih.gov/disorders/stroke/poststrokerehab. htm>.

"Stroke Statistics". 2006. *Internet Stroke Center*. Accessed 19 Oct. 2011. <http://www.strokecenter.org/patients/aboutstroke/stroke-statistics/>.

"Phidgets Inc. - Unique and Easy to Use USB Interfaces". 2010. Accessed 19 Oct. 2011. <http://www.phidgets.com/products.php?category=3&produc t_id=3134>.