MICROSCOPE CELL CULTURE INCUBATION HOUSING

Ian Linsmeier – Leader Tyler Klann – Communicator Paul Strand – BWIG Rebecca Stoebe – BSAC

Dr. John Pucinelli – Client Dr. Randolph Ashton – Advisor

Outline

- Problem Statement
- Background Information
- Design Specifications
- System Components
- Designs & Matrix
- Future Work

Problem Statement

To develop a cell culture incubation chamber with interchangeable culture plates that is compatible with the Olympus IX71 microscope. This incubation chamber must be able to maintain an internal environment of 37°C, 5% CO₂ and 90-100% over long durations for time course experiments, without compromising the integrity of the microscopes optics or functionality.

Background Information

Olympus IX71
 Inverted Microscope
 Fluorescence imaging
 Live-Cell Imaging
 Asses cellular dynamics

Olympus IX-71 Inverted Microscope

Existing Products

- Four problems
 - Expensive
 - Temperature gradients
 - Condensation buildup
 - Evaporation of cell culture fluids

Product Design Specifications

- Environmental Conditions
 - 37°C ± 2°C; 5% CO₂ ± 1%; 90-100% RH
- Compatible with various cell culture plates
- Incubator is a closed system
- Condensation cannot interfere with microscope optics
- Easy to assemble and remove from microscope
- Incubator housing cannot interfere with microscope operation

Components

- Heating Element
 - Nichrome wire with variable current
- Humidifier
 - Bubble gas humidifier
- Sensors
 - \blacksquare Non-dispersive infrared CO $_2$ sensor
 - RH sensor and Thermometer
- \Box CO₂ Regulation
 - Valves controlled by microcontroller
- Housing Material
 - Acrylic (Plexiglass)

Flow Diagram

Design 1

Pros

- Culture plate is directly on microscope stage
- Smaller % loss of environmental conditions during culture access

Cons

- More difficult to regulate
 CO₂ and RH
- Greater temperature gradients

Design 2

Pros

- Cost effective
 Higher precision of environmental control
- - Difficult to access culture plate
 - Culture plate not in range of focus

Design 3

Pros

- Culture plate is directly on microscope stage
- Entire microscope stage is heated, preventing temp gradient

Cons

- More complicated enclosure design
- Difficult to regulate temperature

Design Matrix

Prototype	Weight	Design #1	Design #2	Design #3
Cost	15/100	10	12	9
Heating	20/100	12	16	15
Ease of Use	15/100	13	10	14
CO ₂	20/100	5	17	16
Humidity	10/100	5	7	6
Microscope functionality	20/100	5	0	18
Total	100	50	62	78

Future Work

- Model design in SolidWorks
- Thermal testing
 - Test condensation buildup
 - Determine heating element placement
- Test "bubbling" humidifier for rate of evaporation
- Test air and CO₂ mixing
- Design circuit and microcontroller/sensor connections
- Build prototype

Acknowledgments

Dr. Randolph Ashton

Dr. John Puccinelli

Dr. Amit Nimunkar

References

<u>Images</u>

http://cellularimaging.perkinelmer.com/support/dr_simon_vipoir/detail.php?id=47 http://www.olympusamerica.com/seg_section/product.asp?product=1023 http://spectraservices.com/Merchant2/merchant.mvc?Screen=PROD&Product_Code=THSS&Category_ Code=EC http://sundaecorp.com/co2meters/Documentation/Datasheets/DS33-ICB-01.pdf