Vibrotactile Stimulator

Optimization of Skin Response to Vibration

Team

John McGuire Wan-Ting Kou Alan Meyer Albert Wang

Advisor Amit Nimunkar

Client Na Jin Seo UW-Milwaukee Industrial & Manufacturing Engineering John Webster

UW-Madison Biomedical Engineering

Overview

- Problem Statement
- Background
- Motivation
- Design Specifications
- Design Options
- Design Matrix
- Final Design
- Future Work
- Acknowledgement
- References

Problem Statement

- + A device must be developed to improve the workers' response time by stimulating their sense of touch through vibrations in their hands.
- + The device must be **MR-compatible** in order to analyze brain activity during the stimulus to the hand.

Problem Statement

+ The overall goal

To prove that a continuous stimulus on the hand can improve the range of sensory frequency perception.

Background

+ Falls from ladder or scaffold at workplaces
#1 cause of disabling injuries

- #2 cause of fatalities[1][2]
- + Compensation:

\$6.2 billion annually[1][2]

Background

- + Skin sensation of hand is the first sensory cue for detecting the fall [3]
- + Stochastic resonance [4]
 - Enhance sub-threshold signal by adding adequate noise
 - Effect already shown in vibration stimulation
 on feet

Motivation

- + Falling can be stopped by detecting the fall initiation
- + Current device is bulky
- Not MR-compatible for monitoring brain activity

Design Specifications

- + MR-compatibility
- + Smaller tactor
- 1 mm thickness, 1 cm diameter
- + Adjustable frequency (30 Hz to 300 Hz)

Design Options

- 1) Solenoid
- 2) Piezoelectric Device
- 3) Pneumatic Device

Design Option 1: Solenoid

 Inducing a magnetic field in a coil of wire is used to move a magnetic core.

+ Springs or AC can be used to reverse direction

Design Option 1: Solenoid

Advantages

- Vibration frequency easily adjustableSignal generator
- + Relatively inexpensive

Disadvantages

- + Require MR shielding for MR-compatibility
- + Difficult to build at small size

Design Option 2: Piezoelectric Device

+ Applied charge excites the particles of a piezoelectric material, resulting in a force or vibration

Design Option 2: Piezoelectric Device

Advantages

- + Vibration frequency easily adjustable
 - Proportional to the charge applied
- + Relatively inexpensive

Disadvantages

- Wiring of the system may affect (and be affected by) magnetic field of the MRI
- + Low frequency = Larger size (area)

Design Option 3: Pneumatic Device

+ Using the change in pressure of air to produce motions, or vibration

Design Option 3: Pneumatic Device

Advantages

- + MR-compatibility
- Adjustability
 Solenoid valves, Control Unit

Disadvantages

- + Low vibration frequency (<100Hz)
- + Higher cost

Design Matrix

	Solenoid	Piezoelectric Device	Pneumatic Device
MR Compatibility (25)	0	20	24
Frequency (20)	15	15	10
Tactor Size (15)	8	12	10
Driver Size (10)	7	8	5
Adjustability (15)	10	11	9
Longevity (10)	6	8	7
Cost (5)	3	3	2
Total (100)	49	77	67

Future Work

Fabrication

Circuits construction Tactor networking Tactor attachment System enclosure

MR compatibility 30~300Hz verification Subthreshold optimization

Testing

Acknowledgement

- + Prof. Na Jin Seo (Client) UW-Milwaukee Department of Industrial & Manufacturing Engineering
- + Prof. John Webster (Client) Ph.D., UW-Madison Department of Biomedical Engineering
- + Amit Nimunkar (Advisor)

Acknowledgement

+ Kurt Kaczmarek Ph.D. Senior Scientist, UW-Madison Department of Biomedical Engineering Department of Orthopedics and Rehabilitation

+ Tim Balgemann UW-Madison BME Master Graduate

+ Pete Klomberg UW-Madison BME Bioinstrumentation Lab

+ Prof. Walter F. Block

Associate Chair of the BME Graduate Program Department of Biomedical Engineering

Reference

[1] Bureau of Labor Statistics. (2009). Census of fatal occupational injuries.

- [2] Bureau of Labor Statistics. (1993). Survey of occupational injuries and illness.
- [3] Motawar BR, Hur P, Seo NJ. (2011). Roles of cutaneous sensation and gloves with different coefficients of friction on fail recovery during simulated ladder fails. The 35th Annual Meeting of the American Society of Biomechanics.
- [4] Wells, C., Ward, L.M., Chua, R., Inglis, J.T. (2005). Touch Noise Increases Vibrotactile Sensitivity in Old and Young. Psychological Science. 16(4). 313-320.
- [5] Briggs, R.W., Dy-Liacco, I., Malcolm, M.P., Lee, H., Peck, K.K., Gopinath, K.S., Himes, N.C., Soltysik, D.A., Browne, P., Tran-Son-Tay, R. (2004). A pneumatic vibrotactile stimulation device for fMRI. Magnetic Resonance in Medicines. 51. 640-643.

Images

- [6] "Scaffold" http://www.post-gazette.com/xtras/pghimages/default.asp?page=2
- [7] "Fall Hazard" http://www.mysafetysign.com/Safety-Signs/Fall-Hazard-Guardrail-Safety-Net-Sign/ SAF-SKU-S-4187.aspx
- [8] "Solenoids" http://www.societyofrobots.com/actuators_solenoids.shtml
- [9] "Piezosensor" http://josephmalloch.wordpress.com/projects/mumt619/

