Step Rate Monitor for Running Analysis

Christa Wille - Team Leader
Carmen Coddington - Communicator
Bryan Jepson - BWIG
Joel Schmocker - BSAC

Mitch Tyler - Advisor, Department of Biomedical Engineering

Client Information

Bryan Heiderscheit, PT, PhD

- Professor in the Physical Therapy department
- Director of UW Runners' Clinic
- Research focus is on running related injuries

Problem Statement

- Create a device that will identify a runner's step rate while on a treadmill
- Identify step from the resulting vibrations carried through the treadmill
- Device is intended for use in the clinical setting

Running Related Injuries

- 56% of recreational runners will sustain a running related injury each year ${ }^{6}$
- Excessive joint loading is a common risk factor ${ }^{1,4}$
- Modifying applied load may be one injury prevention strategy

Step Rate Modification

- Kinematic changes resulting from an increase in step rate
- Decrease step length
- Decrease heel to center of mass (COM) distance at initial contact
- Decrease foot inclination angle
- Decrease COM vertical excursion

Energy Absorbed

- Increase in step rate reduces energy absorbed
- Reduction in joint loading may allow runners to continue running without aggravating symptoms during rehabilitation

Competition

- Visual observation
- Time consuming
- Inaccurate
- Pedometer
- Time consuming
- Instrumented treadmil
- Costly

Figure 2. Treadmill
instrumented with force plates.

Sensor Alternatives: Accelerometer

Data Processing

- Signal of interest: treadmill vibration or tibial acceleration

Sensor Alternatives: Sound

Data Processing

Treadmill

- Signal of interest: footfall "noise"
- Must separate signal from extraneous audio

Sensor Alternatives: Optical

Data Processing

- New variable: runner placement

Sensor Alternatives

	Weight	Accelerometer	Sound	Optical
Sensitivity	20	$\mathbf{1 6}$	16	16
Signal:Noise	40	$\mathbf{3 4}$	16	32
Feasibility	15	$\mathbf{1 3}$	10	9
Cost	5	$\mathbf{4 . 5}$	4.5	2
Reliability	20	$\mathbf{1 2}$	5	15
Total	100	$\mathbf{7 9 . 5}$	51.5	74

Sensor Placement Alternatives

	Weight	Tibia	Under Treadmill
Signal:Noise	25	20	$\mathbf{1 5}$
Preparation Time	40	25	$\mathbf{4 0}$
Biologically Relevant Signal	35	30	$\mathbf{2 5}$
Total	100	75	$\mathbf{8 0}$

Software Alternatives

	Weight	LabVIEW	Java	Matlab
Real-time Processing	40	$\mathbf{3 5}$	25	20
Data Presentation	30	$\mathbf{2 7}$	25	10
Built-in Functionality	20	$\mathbf{1 5}$	10	10
Flexibility	10	$\mathbf{8}$	10	5
Total	100	$\mathbf{8 5}$	70	45

Sensor Placement: Tibia

- Clear signal but requires sensor attachment for each subject

Sensor Placement: Under treadmill

Subject walking

Subject running

Final Design

Programming with LabVIEW

Import Data \longrightarrow Filter (Butterworth) \longrightarrow Set Threshold Voltage

Real Time
User Interface

Store Date for Later Use (TDMS Data File)

Final Design

Start

Computer
1). Low pass filter 2). Analyze Data

Store Data

Future Work

- Design \& build hardware \& software
- Mount accelerometer
- Capture and process data in real-time
- Use LabVIEW for relevant display
- Test
- Placement of accelerometer
- Mounting options
- Orientation of accelerometer
- Analyze
- Threshold and filters for each individual

Future Work

- Identify Revisions
- Build
- Optimize
- Device interface with runner
- Identification of ground reaction forces
- Feedback

Overall Objectives

- Improve clinical experience
- Eliminate need to count step rate
- Improve runner clinician interaction
- Easy to use system
- Clear and simple results

http://reginanuzzo.com/?p=36

References

1. Ferber R, Noehren B, Hamill J, Davis I. J Orthop Sports Phys Ther. 2010; 40:52-8.
2. Fitzgerald J. Strength Running. 2011.
http://strengthrunning.com/2011/07/how-to-get-hurt-
running-injury/
3. Heiderscheit BC, Chumanov ES, Michalski MP, Wille CM, Ryan MR. MSSE. 20011. 43:2:296-302.
4. Noehren B, Davis I, Hamill J. ASB Clin Biomech (Bristol, Avon). 2007;22:951-6.
5. UW Health. Sports Medicine. 2011. http://www.uwhealth.org/sports-medicine/runnersclinic/11310
6. van Gent RN, Siem D, van Middelkoop M, van Os AG, Bierma-Zeinstra SM, Koes BW. Br J Sports Med. 2007;41:469-80; discussion 80.

Acknowledgements

- Bryan Heiderscheit, PT, PhD
- Mitch Tyler, BME Department
- Pete Klomberg, BME Department
- Deborah Yagow, National Instruments

Questions?

