Step Rate Monitor for Running Analysis

Christa Wille – Team Leader Carmen Coddington – Communicator Bryan Jepson – BWIG Joel Schmocker – BSAC

Mitch Tyler – Advisor, Department of Biomedical Engineering

Client Information

Bryan Heiderscheit, PT, PhD

- Professor in the Physical Therapy department
- Director of UW Runners' Clinic
- Research focus is on running related injuries

Problem Statement

- Create a device that will identify a runner's step rate while on a treadmill
- Identify step from the resulting vibrations carried through the treadmill
- Device is intended for use in the clinical setting

Running Related Injuries

- 56% of recreational runners will sustain a running related injury each year⁶
- Excessive joint loading is a common risk factor^{1,4}
- Modifying applied load may be one injury prevention strategy

Step Rate Modification

- Kinematic changes resulting from an increase in step rate
 - Decrease step length
 - Decrease heel to center of mass (COM) distance at initial contact
 - Decrease foot inclination angle
 - Decrease COM vertical excursion

Heiderscheit et al. 2011

Energy Absorbed

- Increase in step rate reduces energy absorbed
- Reduction in joint loading may allow runners to continue running without aggravating symptoms during rehabilitation

Heiderscheit et al. 2011

Competition

- Visual observation
 - Time consuming
 - Inaccurate
- Pedometer
 - Time consuming
- Instrumented treadmil
 Costly

Figure 1. Garmin watch and footpod used to identify step rate.

Figure 2. Treadmill instrumented with force plates.

 Signal of interest: treadmill vibration or tibial acceleration

- Signal of interest: footfall "noise"
- Must separate signal from extraneous audio

Sensor Alternatives

	Weight	Accelerometer	Sound	Optical
Sensitivity	20	16	16	16
Signal:Noise	40	34	16	32
Feasibility	15	13	10	9
Cost	5	4.5	4.5	2
Reliability	20	12	5	15
Total	100	79.5	51.5	74

Sensor Placement Alternatives

	Weight	Tibia	Under Treadmill
Signal:Noise	25	20	15
Preparation Time	40	25	40
Biologically Relevant Signal	35	30	25
Total	100	75	80

Software Alternatives

	Weight	LabVIEW	Java	Matlab
Real-time Processing	40	35	25	20
Data Presentation	30	27	25	10
Built-in Functionality	20	15	10	10
Flexibility	10	8	10	5
Total	100	85	70	45

Sensor Placement: Tibia

 Clear signal but requires sensor attachment for each subject

Final Design

Final Design

Start

Future Work

- Design & build hardware & software
 - Mount accelerometer
 - Capture and process data in real-time
 - Use LabVIEW for relevant display
- Test
 - Placement of accelerometer
 - Mounting options
 - Orientation of accelerometer
- Analyze
 - Threshold and filters for each individual

Future Work

- Identify Revisions
- Build
- Optimize
 - Device interface with runner
 - Identification of ground reaction forces
 - Feedback

Overall Objectives • Improve clinical experience

- Eliminate need to count step rate
- Improve runner clinician interaction
- Easy to use system
- Clear and simple results

References

- 1. Ferber R, Noehren B, Hamill J, Davis I. J Orthop Sports Phys Ther. 2010; 40:52–8.
- 2. Fitzgerald J. Strength Running. 2011. http://strengthrunning.com/2011/07/how-to-get-hurtrunning-injury/
- 3. Heiderscheit BC, Chumanov ES, Michalski MP, Wille CM, Ryan MR. *MSSE.* 20011. 43:2:296-302.
- 4. Noehren B, Davis I, Hamill J. ASB *Clin Biomech* (Bristol, Avon). 2007;22:951–6.
- 5. UW Health. Sports Medicine. 2011. http://www.uwhealth.org/sports-medicine/runnersclinic/11310
- van Gent RN, Siem D, van Middelkoop M, van Os AG, Bierma-Zeinstra SM, Koes BW. Br J Sports Med. 2007;41:469–80; discussion 80.

Acknowledgements

- Bryan Heiderscheit, PT, PhD
- Mitch Tyler, BME Department
- Pete Klomberg, BME Department
- Deborah Yagow, National Instruments

Questions?