PORTABLE DEVICE FOR BREAST VOLUME MEASUREMENT Aaron Dederich, Joseph Henningsen, Brett Napiwocki, Ben Smith Client: Dr. Ramzi Shehadi Advisor: Dr. Tracy Puccinelli

ABSTRACT

Our client, Dr. Ramzi Shehadi is a reconstructive surgeon interested in developing a device to pre-operatively measure the volume of a patient's healthy breast in order to more accurately perform the Transverse Rectus Abdominus Myocutaneous (TRAM) Flap procedure on the breast that underwent a mastectomy. The device would improve the rate of success of the procedure and the symmetry of the breasts – especially for surgeons lacking significant experience with the procedure. Our final design uses volume displacement principles and incorporates two containers, a valve, and a sliding scale to measure the breast volume. The device was designed to accurately measure breast sizes up to 600 cm³ for the small version, and 1300 cm³ for the large version. This encompassed a small to medium breast size range. It was demonstrated through testing that the device was able to determine volume precisely and with the desired accuracy.

INTRODUCTION

- **Problem Statement:** A simple, cheap, portable device is needed in order to pre-operatively determine the volume of a breast
- Mastectomies are the most common
- treatment for breast cancer^[1] TRAM flap procedure is performed
- after mastectomy^[2]
- Knowing the volume of the healthy breast pre-surgery would allow surgeons to determine the amount of tissue to take during the procedure

Figure 1: TRAM flap procedure illustration with tissue taken from the abdomen and transferred to the breast.^[1]

CURRENT METHODS

- Comparison to prosthetics
- Estimation by using touch and sight
- 3D Imaging devices
- MRI scan
- Cast molds
- Grossman-Roudner device^[3]

Figure 2: HandyScan 3D, a portable laser device able to produce an accurate 3-D image from which a volume could easily be determined^[4] geometry^[3]

DESIGN SPECIFICATIONS

- Ouick determination of breast size
- Accurate within 10% of the actual breast volume
- Simple enough for any one person to use
- Portable in a clinical setting
- No more than 10lbs
- \$500 preliminary budget

Table 1: Design matrix describing the justification for the final design choice

Category	Lasers	Water Displacement	
Cost (25)	10	25	
Accuracy (20)	5	15	
Portability (15)	7	12	
Ease of Use (15)	5	12	
Maintenance (10)	9	5	
Speed (5)	1	4	
Patient Comfort (5)	5	3	
Safety (5)	5	5	
Total (100)	47	81	

FINAL DESIGN

<u>Components</u>:

- External container: Acrylic cylinder, acrylic cap, and aluminum bottom that holds water that flows into primary container
- Primary container: PVC cylinder in which the breast is inserted and water flows into
- Valve: Starts and stops flow between external and primary container
- Membrane: LDPE film attached to the rim of the primary container, forming a
- water-tight seal between the breast and the primary container
- Membrane seal: Steel hose clamp attaches membrane to primary container Scale: ABS component allowed to be adjusted up and down the external container, and calibrated to show the volume of the breast as a function of the water remaining in the external container

Process:

- Breast is inserted into primary container in loose fitting membrane
- Top of scale is positioned at water level of external container
- Valve is opened, water fills primary container around breast Remaining water level in external container is measured by the scale, determining
- breast volume

Figure 4: Final design SolidWorks model

Specific Material	Cost
4½ inch diameter PVC Slip Cap	\$7.71
Dual-layered LDPE Sheet	\$2.40
4¼ – 7 inch Steel Hose Clamp	\$1.72
12 x 12 inch, 1/32 inch think, Nitrile	\$10.36
¼ inch end, Male x Female threaded, Chrome-plated, Brass Ball Valve	\$7.90
1 inch thick, 3½ inch diameter, High-strength, Aluminum disk	\$19.71
12 inch long, 3 inch inside diameter, ¼ inch thick wall, Acrylic cylinder	\$22.03
¼ inch thick, 3 inch diameter Acrylic disk	\$6.64
ABS (Rapid Prototyped)	\$57.04
	4½ inch diameter PVC Slip CapDual-layered LDPE Sheet4¼ - 7 inch Steel Hose Clamp12 x 12 inch, 1/32 inch think, Nitrile¼ inch end, Male x Female threaded, Chrome-plated, Brass Ball Valve1 inch thick, 3½ inch diameter, High-strength, Aluminum disk12 inch long, 3 inch inside diameter, ¼ inch thick wall, Acrylic cylinder¼ inch thick, 3 inch diameter Acrylic disk

Figure 3: Grossman-Roudner device measures volume using cone

3D Imaging	
15	
10	
7	
14	
9	
4	
5	
5	
69	

Figure 5: Final larger-sized prototype

Table 3: The mean was found from 5 measurements of each object

Object Number	Accepted Volume	Mean
1	260 mL	280 mL
2	150 mL	180 mL
3	125 mL	160 mL

- Testing shows repeatability
- Reasonably accurate gives an approximate volume
- Slightly difficult to use
- Device determined volume quickly
- Inversion of device was efficient Easy to switch primary container sizes

- Improve ease of use
- Wider range of sizes

- Coverable or sterilizable
- Increase durability of device
- Develop better seals between containers, membrane, and valve Increase denominations on scale

REFERENCES

http://www.vtechams.com/en//procudts.asp?ID=31>.

RESULTS

Figure 6: Error bars were one standard deviation of data set

DISCUSSION

- Measurement was more accurate for uniform objects

Test the device on prosthetics and human breasts Change external container to a more compact size

Add transducer that outputs the volume based on measured pressure

ACKNOWLEDGEMENTS

Dr. Ramzi Shehadi, Dr. Tracy Puccinelli, and Dr. John Puccinelli

"TRAM Flap." Reconstructive Breast Surgery. Web. 15 Nov. 2011. http://www.breastreconstruction.ca/living_tram.htm>. "TRAM Flap Reconstruction Surgery." Mayo Clinic. Web. 01 Dec. 2011. http://www.mayoclinic.org/breast-cancer/tramsurgery.html. Kayar, Ragip. "Five Methods of Breast Volume Measurement: A Comparative Study of Measurements of Specimen Volume in 30 Mastectomy Cases." *Libertas Academia*. 27 Mar. 2011. Web. 05 Dec. 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076010/. "Creaform HandyScan 3D." Vtech Advanced Manufacturing Solutions. Web. 04 Dec. 2011.