
Sensor for Breast Imaging Device

Derek Pitts- Team Leader Rafi Sufi- Communicator Shawn Patel- BWIG Adam Strebel- BSAC

Client- Professor Hagness

Advisor- Beth Meyerand

Figure 1: Picture of 3D imaging device courtesy of Owen Mays.

Outline

- Background
- Motivation
- Problem Statement
- Client Requirements
- Design 1
- Design 2
- Design 3
- Evaluation Matrix
- Future Work
- References and Acknowledgements
- Questions

Background

- 1 in 8 women develop breast cancer
- 30% of cancer in women
- Initial screening
 - o Mammogram
 - \circ X-ray

Figure 2: Example of x-ray device used in a mammography [4].

Background

- Mammography gold standard
- Underserved population
 - Higher risk
 - High breast density
 - Harder to screen
- MRI has 50% false-positive

References: [6]

Background

3D microwave imaging device

- Fraction of cost of MRI
- Ease of use
- Accessibility
- Low health risk
- Conductivity and permittivity of tissue
 - Contrast
 - Biocompatible contrast agents

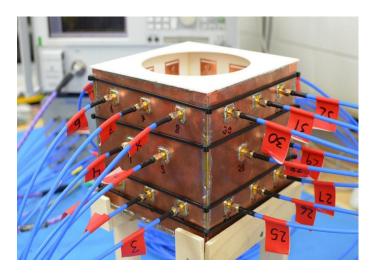


Figure 1: Picture of 3D imaging device courtesy of Owen Mays.

References: [6]

Motivation

- Filling/draining currently performed by human
 - Requires significant effort
 - Can't tell how much liquid needed
 - Large margin of error, frequent spills
- Client needs pump with sensor
 - Monitors liquid level, stops at top
 - Adjusts volume filled with breast size

Problem Statement

- Sensor / Pump system
- Automated
- Fill / Drain
- Portable
- Fill time < 5 Min

Client Requirements

- No metal inside box
- Two holes maximum
 1cm or smaller
- Not reliant on manual operator
- No size constraint
 - Wheeled into room
 - Fit under MR bed
- \$600 budget

Figure 3: Picture of cart that patient is placed on for the breast imaging procedure. Red circle denotes the prospective location of the device. Picture courtesy of Owen Mays.

Design 1: Piezo-Resonant Sensor

- Non-intrusive
- Acoustic impedance mismatch
- Plastics compatible
- USB interface

Figure 4: Image of Piezo-resonant sensor. [7]

Design 2: FSR Sensor

- Microcontroller
- Minimally intrusive
- Circuits
- Placement of sensor

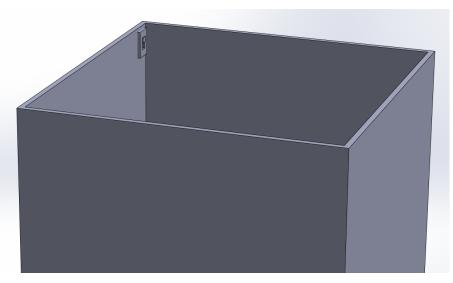


Figure 5: Various sizes of FSR Sensors. [5]

Design 3: Kill-Switch

- No microcontroller
- Invasive
- Automatic shutoff

Figure 6: Proposed implementation of kill-switch design.

Buoyant ball

Design Evaluation Matrix

Criteria	Weight	Piezo- Resonant	FSR	Kill-Switch
Invasiveness	30	30	10	10
Reliability	30	25	20	15
Feasibility	20	15	10	17
Compatibility	15	10	5	15
Removability	5	5	0	0
Total	100	<u>85</u>	45	57

Future Work

- Construct model box
- Research new non-invasive sensor
- Order sensor
- Perform sensor testing
- Incorporate pump in prototype, retest

References

- [1] "Benefits and Limitations of Mammography," ed.
- [2] "Saving Women's Lives: Strategies for Improving Breast Cancer Detection and Diagnosis," ed. Washington (DC): National Academies Press, 2005.
- [3] (2011, 10/11/12). *New method for breast cancer imaging*.
- [4] "What Is Mammography?" *RadiologyInfo*. N.p., n.d. Web. <<u>http://www.radiologyinfo.org/en/info.cfm?pg=mammo></u>.
- [5] (9/17/12, 10/11/12). U.S. Breast Cancer Statistics. Available: http://www.breastcancer.org/symptoms/understand_bc/statistics
- [6] "Inside the Box." *Perspective*. Perspective, 21 June 2011. Web. http://perspective.engr.wisc.edu/2011/06/inside-the-box/>.
- [7] "ExOsense Piezo-Resonant Sensor." *GemSensors*. N.p., n.d. Web. 26 Sept. 2012. http://www.gemssensors.com/en/Products/Level/Single-Point-Level-Switches/Piezo-Resonant-ExOsense>.

Acknowledgements

Advisor: Beth Meyerand

Client: Professor Hagness, Owen Mays, and Matt Burfeindt

Questions?