Development of an Upper Extremity Fracture Model

Kim Maciolek (Team Leader), Hope Marshall (Communicator) Gabe Bautista (BSAC), Kevin Beene (BWIG)

Client: Dr. Matthew Halanski, Department of Orthopedics and Rehabilitation, University of Wisconsin Hospital & Clinics Advisor: Dr. Thomas Yen, Department of Biomedical Engineering

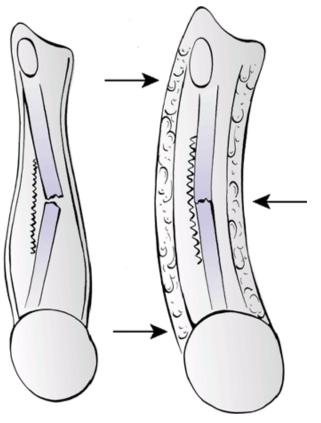
Outline

- Introduction
- Problem Statement
- Design Components and Matrices
 - Force Sensors
 - Temperature Sensors
 - Alignment Sensors
- Additional Elements
- Final Design
- Future Work
- Acknowledgements
- References

Casting & Instruction

- Cast immobilization has become a lost art
 - Casting overlooked by newer treatment options and surgical techniques
- Most young physicians learn casting techniques through trial and error
 - Patient at increased risk of injury
 - Often lack of follow-up with patient to know if any complication or loss of reduction has occurred [1]

Occurrence of Pediatric Fractures


- 40% of fractures among all ages of children involve the forearm
- Greenstick fractures are the most common distal radial and ulnar fracture
 - Bone bends and only partially breaks [1]

Pictures courtesy of client [2].

Casting Process

- □ Assess the fracture via x-ray
- Determine the best treatment option
- If casting, use 3-point molding to reduce fracture
- Maintain pressure and apply casting material, commonly plaster or fiberglass [1]

Picture courtesy of client [2].

Casting Complications

- Casting assumed to be "safe" treatment
- #1 cause of litigation
 ~35% claims paid avg. of \$120,000 each
- Application: burns, irritation
 Rigid tourniquet if too tight
 - Loss of reduction if too loose
- Removal: saw burns [1]

Picture courtesy of client [2].

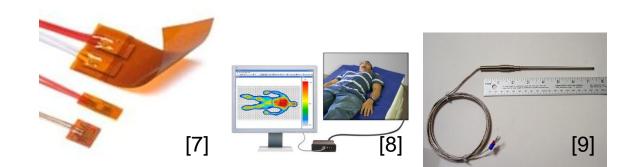
Current Model

- PVC pipes
- Copper coating on simulated forearm
- Temperature loggers on cast saw blade
- Doesn't monitor
 alignment, applied
 force, or temperature
 of skin surface

Picture courtesy of Hope Marshall [3].

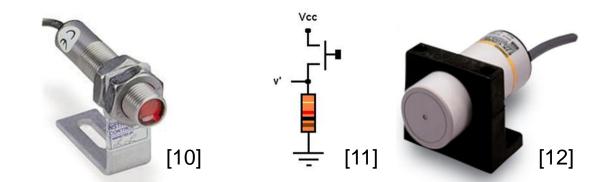
Problem Statement

- Construct distal radial and ulnar fracture simulator that provides immediate feedback to the user and monitors:
 - Fracture reduction
 - Force applied during 3-point molding
 - Temperature of skin surface
- Motivation
 - Teach proper techniques of cast application, reduction, immobilization, and cast removal


Design Criteria

- □ 7" from elbow to wrist
- Reusable device
- Easy for one person to transport
- Measures and displays skin temperature
- Measures and displays pressures applied to the arm in real-time
- Clearly indicates successful fracture reduction
 - -Angulation no more than 15°
 - -Translation no more than 2mm

Design Matrix – Pressure Sensors


		FlexiForce A301 [4]	conductive plasses	[6]
	Weight	TekScan (Individual Sensors)	Zebra Sensor (SensorTech)	Tactile Sensor (Pressure Profile)
Cost	20%	5	3	1
Compatibility	15%	1	4	4
Precision	30%	3	3	5
Resolution	25%	1	2	5
Ease of Use	10%	1	4	4
TOTAL:	100%	2.4	3	3.95

Design Matrix – Temperature Sensors

	Weight	Thermal Ribbon Thermistors	Temperature Mapping	Thermocouple
Cost	35%	3	1	5
Compatibility	10%	2	4	2
Precision	10%	4	4	3
Resolution	25%	3	5	3
Ease of Use	20%	2	4	2
TOTAL:	100%	2.8	3.2	3.4

Design Matrix – Alignment Sensors

	Weight	Optical Sensor	Complete Circuit/Button	Capacitive Sensor
Cost	15%	1	5	2
Compatibility	20%	3	5	3
Precision	30%	2	2	4
Ease of Use	35%	3	5	3
AVERAGE:	100%	2.40	4.10	3.15

Additional Elements

- Chain metal sleeve to protect sensors
- Skin Low Molecular Weight PDMS
- Soft tissue PlatSil Gel-10 (Polytek Development Corp., Easton, PA) or High Molecular Weight PDMS
- Bone acrylic, PVC, or Hydroxyapatite

Final Design

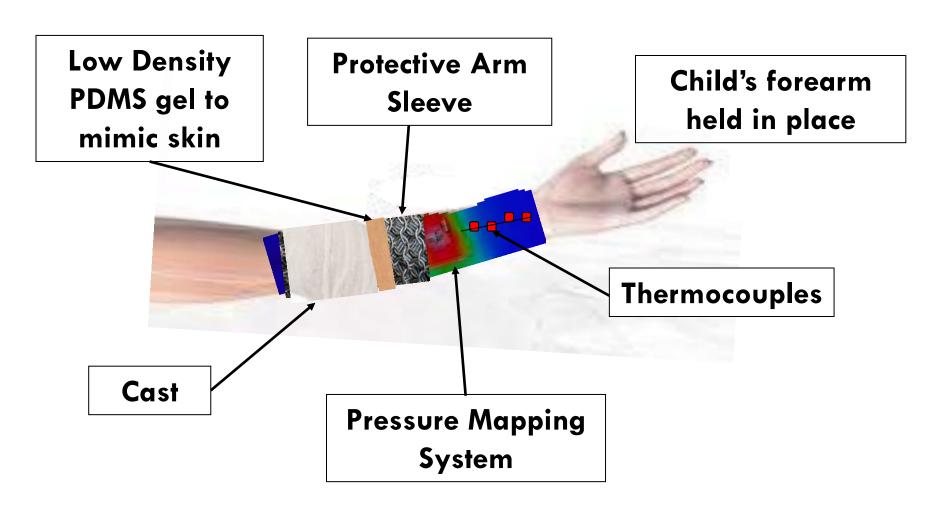
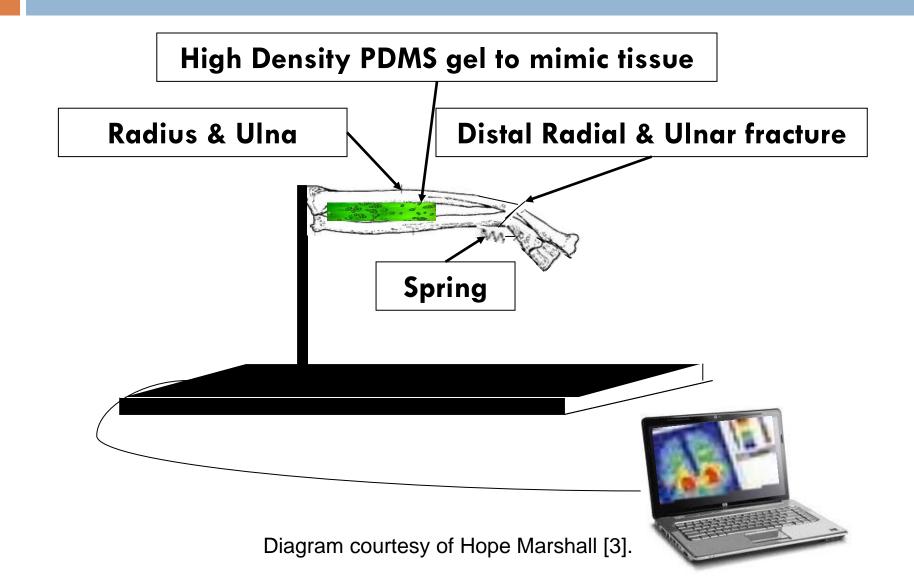



Diagram courtesy of Hope Marshall [3].

Final Design (cont.)

Future Work

- Perform compatibility testing for sensors & materials
- Cast pediatric forearm
- Construct model
- Create user interface
- Collect data from professionals with extensive casting experience, compare to real fracture

Acknowledgements

We would like to extend a special thanks to:

- Dr. Matthew Halanski (client)
- Professor Thomas Yen (advisor)

References

- [1] Halanski M, Noonan KJ. Cast and splint immobilization: complications. J Am Acad Orthop Surg 2008 January;16(1):30-40.
- [2] Photos. Dr. Matthew Halanski.
- [3] Photos & Diagrams. Hope Marshall.
- [4] TekScan (Individual Sensors). Photo. <u>www.tekscan.com</u>
- [5] Zebra Sensor (SensorTech). Photo. <u>www.sensortechcrop.com</u>
- [6] Tactile Sensor (Pressure Profile). Photo. <u>www.pressureprofile.com</u>
- [7] Thermal Ribbon Thermistors. Photo. <u>www.directindustry.com</u>
- [8] Temperature Mapping. Photo. <u>www.sensorprod.com</u>
- [9] Thermocouple. Photo. <u>www.auberins.com</u>
- [10] Optical Sensor. Photo.
 - http://dc190.4shared.com/doc/Fo4NuAQE/preview.html
- [11] Complete Circuit. Photo. <u>www.acroname.com</u>
- [12] Capacitive Sensor. Photo. <u>www.ia.omron.com</u>

Questions?