

WISCONSIN-MADISON

BME Design 200/300

Reusable Hydrometer for Human Specific Gravity Measurements

Matt Walker – Team Leader Xiyu (Steve) Wang – Communicator Jack Goss – BSAC Yue (Jerry) Yin – BWIG

Reusable Hydrometer for Human Specific Gravity Measurements

- Introduction
 - Objective, PDS, Problem Statement, Hydrometer Physics.
- Data and Testing
 - Prototype Designs, Design Matrix, Data Analysis.
- Discussion
 - Timeline, Conclusion, Future Works, Acknowledgements, References.

Introduction

- Objective
- Problem Statement
- PDS
- Hydrometers
- Hydrometer Physics

Objective

 Design and fabricate a prototype adapter to mount onto a commercially available hydrometer for the purpose of measuring the specific gravity of human urine.

Problem Statement

 Kidney stones are an increasing problem in American culture. Approximately 10% of all Americans will have kidney stones that will result in \$2.1 billion dollars in medical expenses. A possible preventative measure is to increase daily urine outflow, however it is hard for an individual to track urine output at home. Dr. Roy Jhagroo, a nephrologist at the University of Wisconsin-Madison hospital, has discovered an approachable method to test daily urine output by measuring the specific gravity of urine. Our team will be designing and implementing a portable, reusable hydrometer prototype to test the specific gravity of urine.

Project Design Specifications

Hydrometer

- Measures SG accurately
- Reusable (with no major effects on accuracy)
- Portable
- 3 in x 3/4 in x 5 in
- No more than 1.5 pounds
- 100 mL of urine for testing
- Adapter
 - Prevents bubble formation
 - Easy flow/stop of urine
 - 6 in length, 3 in diameter (funnel), 1 in diameter (tubing)

Hydrometers

- Hydrometer: measures specific gravity
 - Specific gravity : ρ_{sample} / ρ_{ref}
- Two models:

Swing Arm:

Hydrometer Physics (1)

Line of liquid F_B

 $F_B / SA=$ Pressure = $\rho_{sol} x h x g$ $F_B = F_w = \rho_{sol} x h x g x (SA) = mg$ $h=m/(\rho_{sol} x SA)$

SA = surface area of object

- Pressure is defined by the buoyant force over the surface area of the object
- Height is inversely related to the density of the solution

 $\sigma W_{\alpha}\sigma$

Hydrometer Physics (2)

 $\Sigma Moment = \rho V_1 g x lcos(\alpha + \theta) + \rho V_2 g x lcos(\alpha) - m_1 g x lcos(\alpha + \theta) - m_2 g x lcos(\alpha) = 0$

 $\rho = (m_1 \cos(\alpha + \theta) + m_2 g \cos(\alpha)) / (V_1 g \cos(\alpha + \theta) + V_2 \cos(\alpha))$

- At equilibrium position, moment with respect to the fixed point cancels out.
- If solution has high density, angle alpha will be small.

Hydrometer Physics (3)

H=√(2L²x(1-cos[(90-Θ)+(α-90)])

Data and Testing

- Prototype Designs
- Design Matrix
- Data Analysis

Prototype Designs

- Syringe
- Tube (Swing Arm)
- Funnel (Swing Arm)

Prototype Designs: Hydrometers

Prototype Designs: Hydrometers (2)

Prototype Designs: Hydrometers (3)

Design Matrix

	Fish-tank	Fish-tank	Syringe hydrometer			
	hydrometer design I (Adapter)	hydrometer design II (tube)				
Cost (20%)	5	5	5			
Accuracy (20%)	5	5	4			
Portability (15%)	4	3	5			
Durability (15%)	5	5	3			
Ease of use (15%)	5	3	4			
Fabrication (10%)	4	4	5			
Safety (5%)	5	5	5			
Total score (out of 100)	95	86	87			

Data Analysis

- Effect of temperature on specific gravity
 - Tested with H₂O
 - Room: 1.003
 - Boiling: 1.001
 - Near freezing: <1.000
 - Source of error: physical properties of water

Discussion

- Timeline
- Conclusion
- Future Works
- Acknowledgements
- References

Timeline

Timeline (Tentative):

Task	September			October			November					December		
	7	14	21	28	5	12	19	26	2	9	16	23	30	7
Project R&D														
Lit. Research	X	Χ	Χ	Χ										
Cost Estimation					Χ	X	X							
Manufacturing														
Prototyping														
Deliverables														
Progress														
Reports	X	X	X	X	X	X	X							
PDS		X	X	X	X	X	X							
Midsemester							x							
Final Poster														
Meeting														
Client		Χ		Х										
Team	Х	X	X	X	Χ	X	X							
Advisor	X	X	X	X	X	X	X							
Website														
Update	Χ	Χ	X	X	Χ	Χ	Χ							

Conclusion

- Monitor to prevent kidney stones
- Approachable design
- The hydrometer with adapter is preferred

Future Work

- Fabricating prototype
- Testing on prototypes
- Expected pitfalls
 - Gathering materials
 - Deciding on final prototype
 - Proper time management

Acknowledgements

- We would like to thank:
 - Dr. Jhagroo
 - Dr. Penniston
 - Dr. Ashton
 - The BME department

References

- http://seagrant.oregonstate.edu/sgpubs/onlinepubs/h99002.pdf
- http://dx.doi.org/10.1016/j.talanta.2004.06.029
- http://www.ncbi.nlm.nih.gov/pubmed/16131695
- http://hyperphysics.phy-astr.gsu.edu/hbase/pflu.html
- http://www.engineeringtoolbox.com/density-specific-weight-gravityd_290.html
- http://www.mceus.com/us/uasg.html
- http://ahdc.vet.cornell.edu/clinpath/modules/ua-rout/sg.html
- http://reefkeeping.com/issues/2004-07/rhf/index.php
- http://en.wikipedia.org/wiki/Hydrometer
- http://www.engineeringtoolbox.com/specific-gravity-liquids-d_336.html

