Developing an Oxygen Detection Device for a Microfluidic Hypoxia Chamber Final Design Selection November 5th, 2012

- Client: Professor Brenda Ogle, PhD
- Advisor: Professor Randolph Ashton, PhD
- Team: Matthew Zanotelli Chelsea Bledsoe Karl Kabarowski Evan Lange

Final Design:

Metalloporphyrin-based thin-film sensor Luminescent Material: PdOEPK Encapsulation Matrix: Polystyrene

Thin-Film Sensor Design:

Figure 1. Slide view of thin-film sensor with microfluidic device.

Figure 2. Thin-film oxygen sensor fabricated on a glass slide and placed beneath the microfluidic device for oxygen detection.

Background Information on Luminescent Material:

General Information:

Common name(s): PtOEPK IUPAC name: P Chemical Formula: C Molecular Weight: 74 Substance Class: M

Platinum(II) octaethylporphyrinketone C₃₆H₄₄N₄OPt 743.30 g/mol Metal-Ligand Complex

Figure 3. Absorption and emission spectra of PtOEPK. [1].

Compound Qualities

Indicator	Encapsulation	Unquenched	Quantum	Reported	Excitation	Emission
	Matrix	Lifetime (µs)	Yield	Sensitivity *	Peaks (nm)	Peaks (nm)
PtOEPK	Polystyrene	61.4 at 22°C	0.12	High	398, 592	759
PtOEPK	PDMA	NR	NR	Q _{DO} =97.5%	NR	754
PdOEPK	Polystyrene	480 at 22°C	0.01	Very high	410, 602	790
Eigure 4. Proporties of luminoscont material in various on consulation matrices [2]						

Figure 4. Properties of luminescent material in various encapsulation matrices [2].

Setup for Intensity-bases Optical Oxygen Sensing

Figure 5. Simplified luminescent imaging system for oxygen sensing used for excitation of indicator material [2]

Figure 6. Optical and electrical components used in an excitation-detection system [3].

Figure 7. Schematic of the sensor fabrication process showing stamp fabrication in PDMS [4].

References:

[1] http://www.fluorophores.tugraz.at/substance/633

[2] Grist S.M., Chrostowski L., Cheung K.C. Optical Oxygen Sensors for Applications in Microfluidic Cell Culture. *Sensors*. 2010; 10(10):9286-9316.

[3] Vollmer, A.P.; Probstein, R.F.; Gilbert, R.; Thorsen, T. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. *Lab Chip* **2005**, *5*, 1059-1066.

[4] Nock V, Blaikie RJ, David T. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Lab Chip. 2008;8:1300–1307. [PubMed]