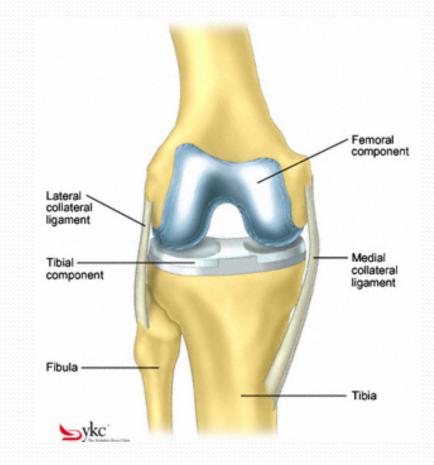
Knee Traction Device

Alex LaVanway, Michael Schmidt, Ryan Keuler, Ryan Reynebeau


Advisor: Professor Mitch Tyler Client: Ms. Kim Skinner, M.S., P.T.

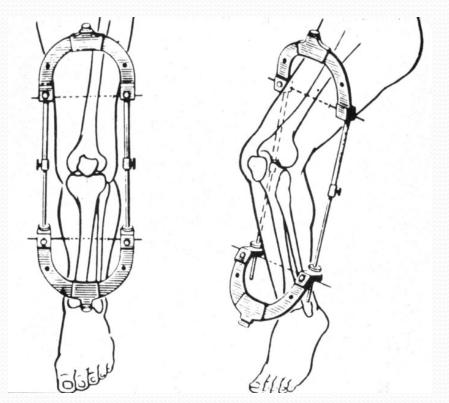
Overview

- Background
- Problem Motivation
- Current Technology
- Design Specifications
- Force Analysis
- Design Alternatives
- Design Matrix
- Future Work


Background

- Osteoarthritis (OA)
 - Progressively degenerative joint disease
 - Affects ≈ 14% of US population¹
 - Medical expenses for individuals and insurers reach ≈ \$185.5 billion annually²

Background


- No true cure widely available
- NSAIDs recommended for pain and swelling
- Total joint replacement is typical
 - Temporary fix lasting only about 10 years
 - Repeated surgeries may be necessary

Picture from: *The Yorkshire Knee Clinic - Arthritis & Knee Rreplacement*. Retrieved October 7, 2012, from http://www.yorkshirekneeclinic.com/knee-surgery/arthritis-knee-replacement/

Background

- Possible alternative: distraction
- Ilizarov surgical distraction (proof of concept)
 - Increases joint space
 - Reduces joint pressure
 - May reverse damaging effects of osteoarthritis³

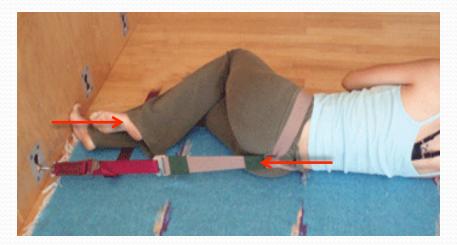
Problem Motivation

- Osteoarthritis is increasingly prevalent
 - Results in diminished quality of life⁴
 - Great impact on economy
- Current treatments do not solve the problem
- Goal: design device to provide nonsurgical knee distraction
 - Non-invasive therapeutic treatment option
 - Individualized regiment provided by physical therapist
 - In-home use

Analogous Technology

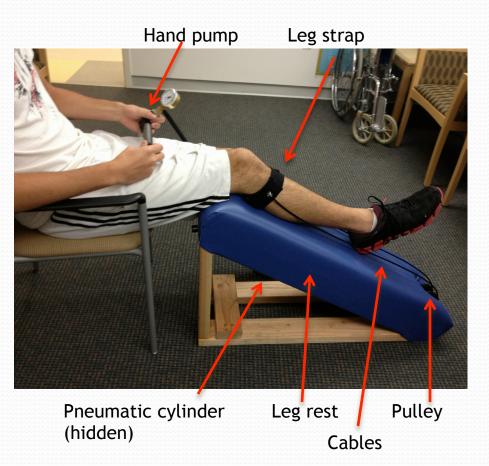
Cervical Traction

- User fills bag with water
- Weight creates traction force to separate the cervical vertebrae
- Easy, affordable, in-home application

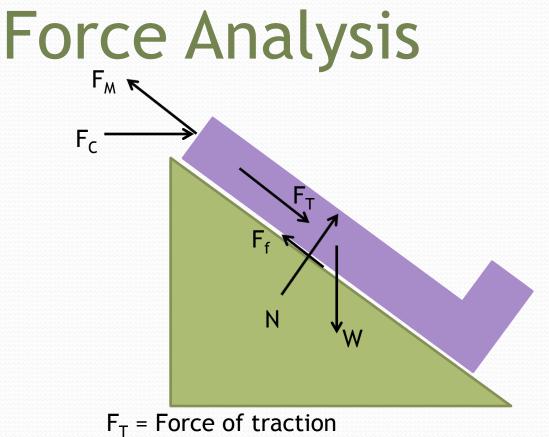


Picture from http://www.physiosupplies.com.au/fitness/ A_Traction_300.jpg

Analogous Technology


Lumbar Traction

- User fastens band around the waist
- Band attaches to wall
- User presses feet against wall, creates tension
- Easy, cost effective traction device

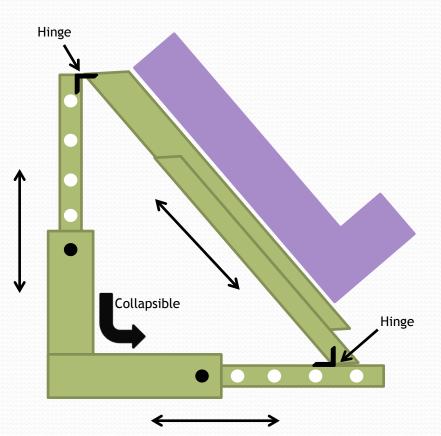

Current Technology

- Previous Design Group Prototype
 - User sits on chair of appropriate height
 - Knee flexion angle fixed at 30°
 - Strap attaches directly below knee
 - Pneumatic pump induces traction force
 - Pros: easily operated, cost effective
 - Cons: bulky, heavy, non-adjustable

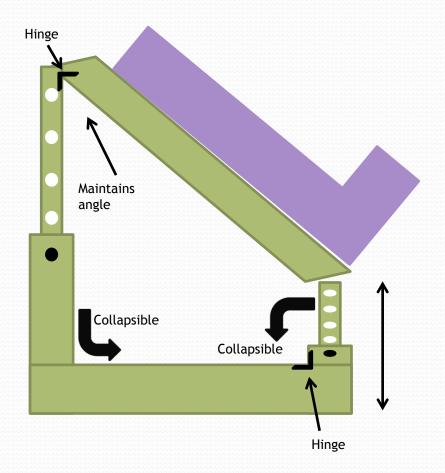
Design Requirements

- Adjustable height and force
- Maintain angle around 30°, i.e. "open-pack" position
- Lightweight easily maneuverable
- Intended for daily home use
- Inexpensive \$400 budget
- Easy to operate
 - Suitable for wide range of patients

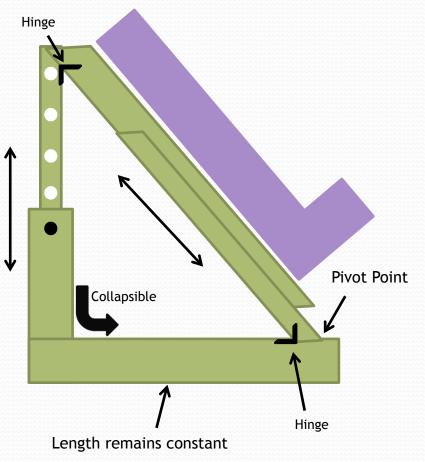
- F_{M} = Force of tendons, muscles, and ligaments in knee
- F_{C} = Internal joint contact force
- F_f = Friction force
- N = Normal force
- W = Weight of leg


Overall Design Concept

- Collapsible
- Height adjustment
- Pneumatic force applicator
- Pulley system


Design 1: Three-Sided Adjustment

- Sliding channel apparatus for leg rest
- Walker/crutch mechanism
 - Adjustable height and length by set intervals
 - Numbered alignment system with reference chart
- Fully adjustable
 - Height, length, and angle


Design 2: Fixed Platform

- Fixed leg rest angle
 - 30° from horizontal
- Both ends vertically adjustable
 - Accommodates many chair heights

Design 3: Pivoting Platform

- Two adjustable sides, coupled system
 - Allows for variable height or angle
- Average chair height (19") will correspond to angle of 30°

Design Matrix

Category	Weight	Three-Sided Adjustment	Fixed Platform	Pivoting Angle
Height Adjustability	30	30	30	25
Ease of Use	25	10	20	25
Portability	20	15	10	15
Ease of Fabrication	15	0	5	10
Angle Adjustability	10	10	0	5
TOTAL	100	65	65	80

Future Work

- Build device
 - Cost of project to date: \$0
 - Estimated cost of final prototype: \$350*
- Subject testing
 - User feedback
 - Force consistency
- Marketability
 - FDA approval

Acknowledgments

- Ms. Kim Skinner (Client)
- Professor Mitch Tyler (Advisor)
- Kelsi Bjorklund, Jacob Stangl, Taylor Lamberty, Amy Martin, Lindy Couwenhoven (Previous design team)

Questions?

References

- 1. CDC Osteoarthritis Info Page. (2011). Retrieved October 7, 2012, from http://www.cdc.gov/arthritis/basics/osteoarthritis.htm
- 2. Pearle, A. D., Warren, R. F., & Rodeo, S. A. (2005). Basic science of articular cartilage and osteoarthritis [Abstract]. *Clinics in Sports Medicine*, 24(1) 1-12.
- 3. Deie, M., Ochi, M., Adachi, N., Kajiwara, R., & Kanaya, A. (2007). A new articulated distraction arthroplasty device for treatment of the osteoarthritic knee joint: A preliminary report. *Arthroscopy: The Journal of Arthroscopic & Related Surgery*, 23(8), 833-838. doi: 10.1016/j.arthro. 2007.02.014
- 4. http://www.jrheum.org/content/31/12/2433.full.pdf