Tibial stent: Designing a novel fixation device for pediatric orthopedic tibia fractures

Advisor : Prof. Tracy Puccinelli Ph.D **Client:** Dr. Matthew A. Halanski, M.D.

Design Team:

Taylor Jaraczewski, Team Leader Lucas Schimmelpfenning,Communicator Stephen Kernien, BWIG Cody Bindl, BWIG Kyle Jamar, BSAC

Overview

- Project Summary
- Current Practices
- Design Requirements
- Alternative Designs
- Design Matrix
- Testing and Future Work

http://www.harlandlawfirm.com/PracticeAreas.htm

Project Summary

 Create expandable implant for tibia fractures in children

 Implant sets fracture while providing stability

 Create device/method for implantation

Background

- Tibia fractures are common in children
- Important to set bones for proper healing
- Children's tibias contain growth plates that must be avoided

http://www.wheelessonline.com/ortho/pediatric _tibial_fracture

Current Practices

Adult Intermedullary Stent

Pediatric Intermedullary Stent

http://www.sciencedirect.com/science /article/pii/Soo2o13830000024 http://www.aaos.org/news/aaosnow/a pr12/clinical2.asp

Design Requirements

- Must span tibial break
- Must have enough stability to align bone
- Must be implantable at distal or proximal location
- Must have a diameter of less than 1 cm
- Must be biocompatible

Alternative Designs

Expanding Foam

Balloon Induced Stent

Expanding Stent

Expanding Foam

- Foam activation within medullary canal
- Contained in bladder for directed shape

<u>Pros</u>

- Biodegradable
- Form fit

<u>Cons</u>

- Difficult proof of concept
- Limited Strength

Balloon Induced Stent

- Modeled after arterial stent
- Mesh cylinder inserted into intermedullary canal
- Inflated by removable balloon

<u>Pros</u>

- Proven design concept
- Ease of implementation

<u>Cons</u>

- Fabrication
- No lateral force

Arterial stent: http://www.beliefnet.com/healthandhealing/getcontent.aspx?c id=14867

Expanding Stent

- Has a natural propensity to expand
- Uses a sheath to control expansion

<u>Pros</u>

- Continuous Lateral Force
- Expansion Control
- Form fit

<u>Cons</u>

- Fabrication
- Optimization

Design Matrix

Parameters	Total Weight	Balloon Stent	Expanding Stent	Expanding Foam
Fixation	10	2	3	1
Client Preference	5	2	3	1
Ease of Implantation	5	3	3	2
Safety	5	3	3	1
Feasibility	5	2	3	1
Cost	3	2	3	1
Total	99	76	99	38

Future Work

- Talk to professors to determine adequate materials
- Manufacture spring component
- Mechanically test prototype in saw bones
- Refine prototype based on testing results

http://www.mts.com/mtscriterion/applic ations/metals/

Special Thanks

- Dr. Matthew Halanski
- Prof. Tracy Puccinelli
- Prof. Darryl Thelen
- Prof. Hiedi Ploeg

Questions????

