Ultrasound Transducer Holder

October 19, 2012

Joseph Henningsen – Team Leader Meghan Anderson – Communicator Daniel Thompson – BSAC Sami McCarthy – Co-BWIG Jared Warczytowa – Co-BWIG

Client: Hirohito Kobayashi, PhD Advisor: Willis Tompkins, PhD

Overview

- Background
- Problem Statement
- Design Alternatives
- Final Design
- Future Work

Background

- Ultrasound: High frequency sound
- Acoustics of material change with load
 - Guitar string
- Steep learning curve

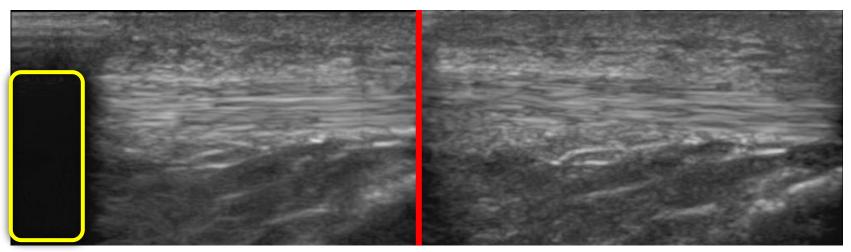


Fig 2: Echometrix software; shadow due to detachment

Background

- Echometrix
 - Ultrasound video software
- Track pixels to develop stiffness/strain relations
 - Healthy tissues vs injured tissues

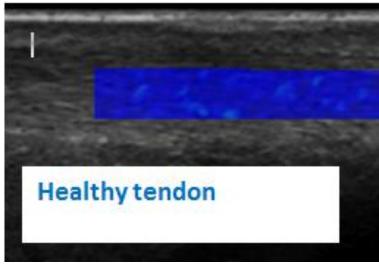
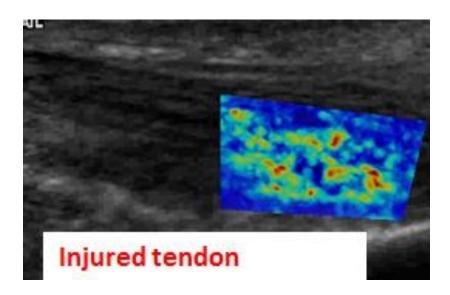



Fig 3: Echometrix software

Problem Statement

- 3 hands needed for good recording:
 - One hand to hold transducer
 - One hand to take recording
 - One hand to apply stretch
- Holder allows MD to focus on stretch application and recording quality

Fig 1: Echometrix logo

Product Design Specifications

- Securely straps on to surface of most body parts
- Allows translation, rotation
 - 6 Degrees of Freedom
- Requires little to no ultrasound gel
- Holder can be cleaned
 - 70% alcohol
- Allow for needle injection therapy

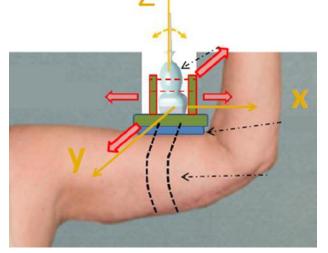


Fig 4: Initial representation of design

Design Alternatives: Rotation

- Rotation of transducer
 - Longitudinal or cross-section
- Needs only one hand
- No movement once set

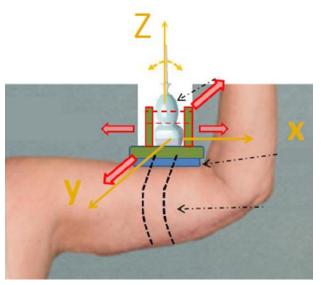


Fig 4: Initial representation of design

Rotating Base

• Pros

- Simple lock mechanismMostly prefabricated
- Cons
 - Material strength
 - Positioning
 - Difficult to fasten

Fig 8: Example of rotating base

Lockable Hinge Joint

- Pros
 - Allows for tilt
 - Strong joint
- Cons
 - Requires two hands
 - Locks every 10°

Fig 9: Example of locking hinge joint

Ball and Socket

- Pros
 - User friendly
 - Most freedom
- Cons
 - Friction locking

Fig 10: Ball and socket joint

Design Matrix: Rotation

	Max	Rotating Base	Hinge Joint	Ball and Socket
Ease of Use	40	25	30	35
Adjustability	30	25	15	30
Durability	15	5	15	10
Cost	15	5	15	10
Total	100	60	75	85

Design Alternatives: Z Direction

- 3mm Z movement
- Able to lock in place
- Easy to operate
- Simple fabrication

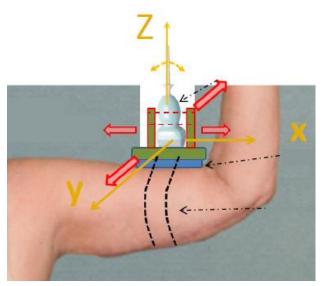


Fig 4: Initial representation of design

Pen

- Pros
 - Simple and easy to use
- Cons
 - Complicated fabrication
 - Weak resistance force

Fig 5: Pen click mechanism

Crutch

- Pros
 - Simple
 - Fabrication
- Cons
 - 3mm too small for button
 - Two handed

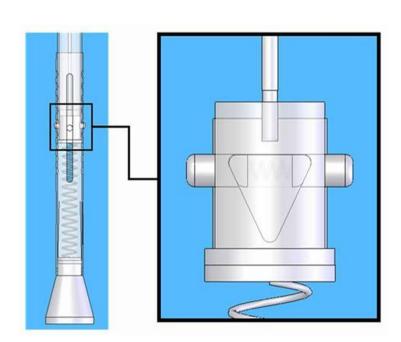


Fig 6: Crutch mechanism

Screw

- Pros
 - One handed operation
 - Adaptable
- Cons
 - Fabrication

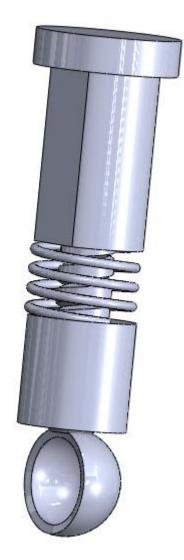
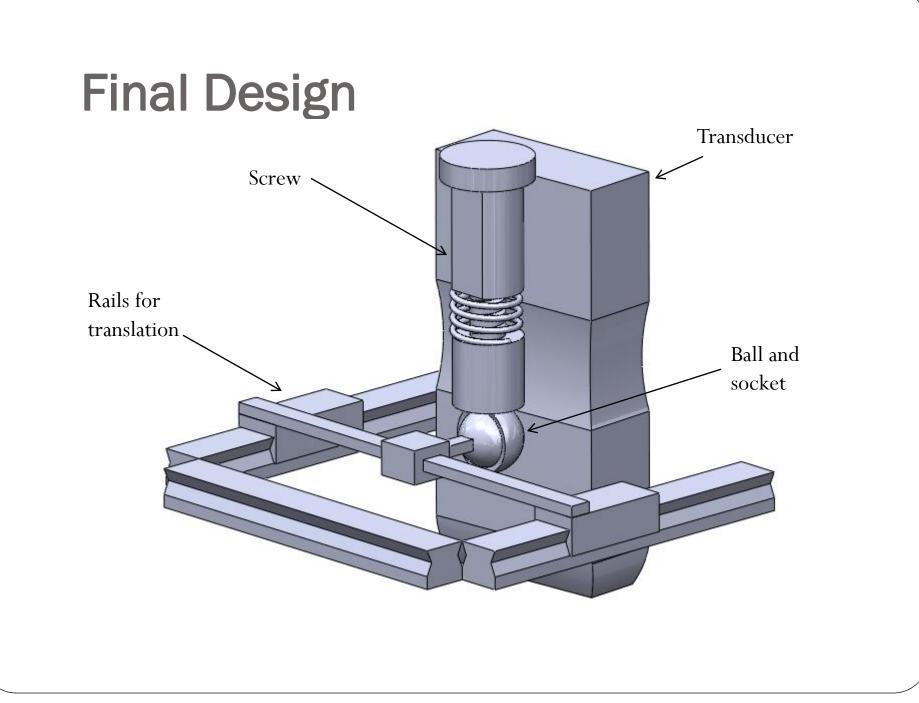



Fig 7: Screw mechanism

Design Matrix: Z Direction

	Maximum	Pen	Crutch	Screw
Ease of Use	40	40	30	35
Adjustability	30	15	15	30
Ease of Fabrication	20	5	5	10
Strength	10	5	10	5
Total	100	65	60	80

Future Work

- Fabrication of design
 - Strap
- Testing with ultrasound technicians
- Evaluate and edit design

Acknowledgements

- Dr. Hirohito Kobayashi, Echometrix
- Willis Tompkins, BME
- Sarah Duenwald-Kuehl, Vanderby Lab, BME

References

- [1]: www.echo-metrix.com
- [2]-[4]: Hirohito Kobayashi
- [5]: http://img.directindustry.com/images_di/photo-g/spring-push-digital-linear-length-gauge-4818-2515981.jpg
- [6]: http://web.resna.org/conference/proceedings/2009/SDC2009/JefferdsA/Figure_1.jpg
- [7]: Solidworks design
- [8]: yoursciontc.com
- [9]: adjustablelockingtech.com
- [10]: colorapples.com

Thank you!

Questions?