Design of Weight Distribution Monitoring System

Team Members: John Diaz de Leon, Katherine Hildebrand, Russell Little, Scott Mawer Advisor: Willis Tompkins Client: Carol Rohl

Overview

Problem Statement and Client Information

Design Alternatives

- Wii Balance Board
- Mechanical Balance
- Wheatstone Bridge/FSR Device

Future Work

Conclusion

Problem Statement

- Hemiplegic patient can't feel left side of body
- Needs help determining if she's standing straight or leaning to the side
- Wants to practice equal weight distribution
- Create portable device to monitor stance, provide feedback

Client Information

- Stroke in 2004: thalamic bleed
- Ocular migraines
- Numbness in left side of body

PDS

- Client Requirements
 - Portable, quick visual feedback, one-handed carrying, durable
- Operational Requirements
 - Use briefly throughout the day, functional in all environments

Size

 ~3 lbs., compact (area of notebook), accommodate a shoulder width stance

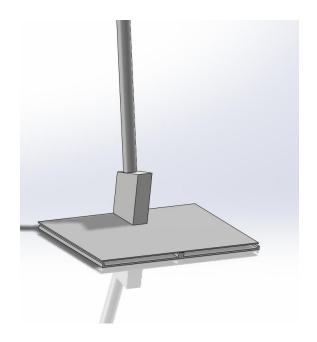
Design Alternatives: Wii Balance Board

- Calculate force on both sides of body
- Communicate with display via Bluetooth

Microprocessor

Pros/Cons: Wii Balance Board

Pros


- Accuracy
- Reliability

Cons

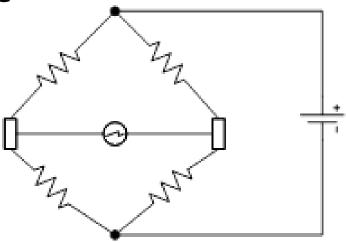
- Size and portability: board is too heavy (~ 8 lb)
- Cost: board, microprocessor
- Feasibility: complicated implementation

Design Alternatives: Mechanical Balance

- Use springs to maintain balanced stance
- Telescoping pole amplifies angle
- Angle displayed with level

Pros/Cons: Mechanical Balance

Pros:


- Cost efficient
- Easy fabrication

Cons:

- Very little portability
- Safety concerns
- Difficult to use/understand output

Design Alternatives: Wheatstone Bridge/FSR Device

- FSRs change voltage across Wheatstone bridge
- Each foot stands on surface above FSR

 Calculate voltage differential between right and left FSRs

Pros/Cons: Wheatstone Bridge FSR Device

Pros:

- Optimal size and portability
- Easy to use and understand feedback
- Safety: can use in all environments

Cons:

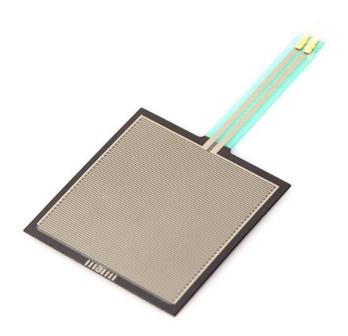
- Accuracy and calibration
- Lifetime from frequent use

Decision Matrix

Criteria	Wii Balance Board	Wheatstone Bridge	Mechanical Balance
Accuracy (10)	10	6	6
Aesthetics (5)	5	4	2
Cost (5)	1	4	5
Ease of Use (20)	13	17	5
Feasibility (10)	4	6	9
Portability (15)	5	14	8
Reliability (15)	13	12	10
Safety (10)	5	9	4
Size (10)	5	9	2
Total (100)	61	81	51

Feedback Options

- Dial measuring voltage across bridge
- LED strip indicating degree of imbalance
- Possible auditory reinforcement



Future Work

- Create Wheatstone bridge
 Calibration
- Analog to digital feedback
- Test to determine degree of imbalance

Possible Pitfalls

- Finding FSRs to support enough force
- Calibration
- Deterioration from repeated use

Conclusion

- Device to measure weight distribution for rehabilitation
- FSR/Wheatstone bridge approach
- Important factors: ease of use, portability, reliability
- Must overcome calibration, deterioration

Questions?