Inflatable Vertebral Body Distractor

Bridget Smith - Team Leader Michael Lohr - Communicator Gabrielle Laures - BSAC Ryan Serbin - BWIG Christina Sorenson - BPAG *Dr. Nathaniel Brooks* - Client UW Hospital and Clinics, Madison, WI

Prof. Bill Murphy - Advisor UW Department of Biomedical Engineering

Presentation Overview

- Introduction
- Problem Statement
- Previous Devices
- Design Specifications
- Design Alternatives
- Design Matrix
- Future Work

Background - The Spine

Anatomy

- Vertebral body
- Intervertebral disc
- Spinal cord
- Nerve roots

Problems

Intervertebral Disc Spinal Cord Nerve Root Vertebra http://www.zimmer.com/content/images/ Discs are soft, degenerate over time

Normal Spinal Segment

Background - Surgery

- Lumbar intervertebral fusion procedure
 - o disc space opened, entered below nerve root
 - o disc space is distracted
 - degenerated disc is removed
 - cage inserted in disc space
 - o removal of distractor

http://www.spinehealth.com/images/degenerated-disc-disease.jpg

Problem Statement

- Device to distract the vertebrae during spinal surgery
 - $\circ~$ allows for removal of intervertebral disc
- Current devices fracture bone or are ineffective
- Pursue an inflatable device

Current Designs

Design Issues:

- Too bulky
- Hard to maneuver
- Small surface contact area applies large pressure to vertebrae

Last Year's Design

Design 1: Box

- Internal balloon
- Box limits horizontal expansion
- Rigid design

Design 2: Catheter

- Pre-inflated catheter
- Stabilizing frame

Design Specifications

• Mechanics:

- o 431 N (compressive)
- o 1720 kPa
 - Required for 3-5 mm distraction

• Safety:

- Biocompatible
- Yielding edges
- Maximum contact surface

 0 10x25mm (anterior ¼ of disk space)

*Image Source: Inflatable Vertebrae Distractor Team (Spring 2014 Mid-Semester Report)

Design Features

- Pressure Gauge
- Axial Inflation
- Tactile Feedback System
- Manipulable

Design 1: Reinforced Inflator

• Materials:

- o Butyl rubber
- Wire or polyester mesh
- High-strength elastomer

• Dimensions (mm):

- Deflated: 10x25x7
- o Inflated: 10x25x16

Design 2: MatJack

- Inspired by existing inflation product MatJack
- Neoprene rubber reinforced with steel/aramid

Dimensions

- 7 mm(width) x 3 mm(height) x 25mm(length) uninflated
- Increase height inflation to 16mm

Design 2: MatJack

Design:

- Polycarbonate balloon
 flat prior to
- insertion
 - Air valve
 - Ultimately connect to air supply

Design 3: Accordion

Design

- Woven structure
- Consists of multiple stacked balloons to
- Polycarbonate balloons **Dimensions**
 - 7mm(height) x 7mm(width) x 25mm(length) uninflated

Design Matrix

Criteria	Weight	Disc		Matjack		Accordian	
Safety	30	2	12	5	30	3	18
Axial Inflation	25	5	25	4	20	4	20
Ease of Use	15	3	9	3	9	4	12
Durability	15	2	6	5	15	3	9
Feasibility	10	3	6	4	8	2	4
Size	5	2	2	5	5	3	3
Total	100	60		87		66	

Future Work

- Develop tactile feedback system
- Create proof of concept
- Research material costs
- Start fabrication

Acknowledgments

- Dr. Brooks
- Professor Murphy
- Spring 2014 Team

References

[1] "Film Stock, 24 In. W, 24 In. L, 0.040 In. T." *LEXAN Film Stock,24 In. W,24 In. L,0.040 In. T.* N.p., n.d. Web. 25 Sept. 2014.

[2] "Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In." *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *GARLOCK SEALING TECHNOLOGIES Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, Aramid Fiber, 1/16 In T, 30 X 30 In.*" *Gasket, 1/16 In T, 30 X 30 In.*

[3] "Polycarbonate Remains Proven and Preferred for Medical Applications." - Nasa Tech Briefs. N.p., n.d. Web. 25 Sept. 2014.
 [4] "Item # 103K, 3.3 Ton Matjack High Pressure Air Lifting Bag." On Matjack-Indianapolis Industrial Products. N.p., n.d. Web. 25 Sept. 2014.

Questions?