# **RaDistance Safety Meter**

Kieran Paddock, Greg Wolf, Christina Sorenson, Alex Smith, Rebecca Alcock

Client: Prof. John Webster, Dr. Eng. Sarah Hagi Advisor: Prof. Beth Meyerand







- Problem Statement
- Background
- Product Design Specifications
- Design Alternatives and Matrices
- Prototype Design
- Future Work
- References/Acknowledgements

### **Problem Statement**

- Detect human proximity to thyroid patients
  - Wearable device to detect proximity (1 meter)
  - $\circ$   $\,$  Distinguish between nonhuman and human  $\,$
  - Should not detect the wearer's body
- Warn patients about proximity
  - Alert by audio, visual, vibratory feedback, etc.
- \$100 budget

# Background

- Patients with Thyroid Cancer ingest radioactive Iodine-131
- Six weeks until it is out of their system
- Others must avoid prolonged exposure
- Device needed to warn user of other people



Image from www.cbsnews.com

# **Product Design Specifications**

#### **Client Requirements**

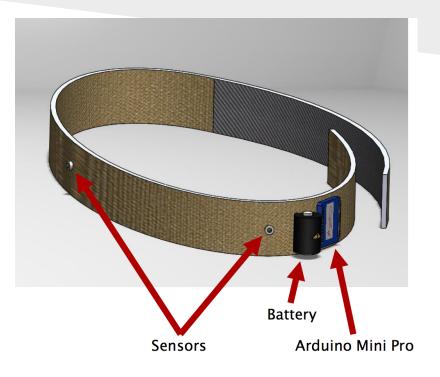
- Device must see 360° around user
- Detect only humans within 1 meter
- Provide some notification to user
- Must be sturdy enough to last six weeks
- Must have battery life of one day
- Comfortable to wear

### Belt

#### Woven nylon belt

#### Advantages

- Easy to wear
- $360^{\circ}$  view
- Disadvantages
- Interference from limbs
- Bulky around the waist




# Headband/Hat

#### Flexible headband worn around hat - battery pack on waistband

#### Advantages

- Unobstructed view
- Durability
- Disadvantages
- Uncomfortable
- Variation in heights



### Chest Harness

GoPro Chest Mount made of elastic

#### Advantages

- Field of view
- Comfort
- Disadvantages
- Hard to fabricate
- Aesthetics



### Design Matrix - Device Configurations

| Device<br>Criteria (weight) | Weight | Belt |    | Fitted Headband<br>for Hat |      | GoPro-style Chest<br>Mount |    |
|-----------------------------|--------|------|----|----------------------------|------|----------------------------|----|
| Accuracy                    | 30     | 2    | 12 | 4.2                        | 25.2 | 4                          | 24 |
| Field of View               | 20     | 4    | 16 | 3                          | 12   | 5                          | 20 |
| Wearability                 | 20     | 3    | 12 | 4.5                        | 18   | 4                          | 16 |
| Durability                  | 10     | 4    | 8  | 4                          | 8    | 4                          | 8  |
| Cost                        | 5      | 4    | 4  | 4                          | 4    | 4                          | 4  |
| Safety                      | 5      | 4    | 4  | 3                          | 3    | 4                          | 4  |
| Aesthetics                  | 5      | 3    | 3  | 3                          | 3    | 2                          | 2  |
|                             |        |      |    |                            |      |                            |    |
| Ease of fabrication         | 5      | 4    | 4  | 3                          | 3    | 3                          | 3  |
| Total                       | 100    | 63   |    | 76.2                       |      | 81                         |    |

### Passive IR/Ultrasonic Distance Sensors

- Measures infrared light from objects to detect movement
- Horizontal field of view of 120°
- Reliably differentiates humans from other objects
- Passive sensors don't emit their own energy
- Able to buy many sensors with budget
- Paired with ultrasonic distance sensors which sense distance using soundwaves

Thermal State Changed!! Image from D-Link

# 3D Depth Sensor

- Maps area with IR laser projector
- Motion analysis tracks joints to form a skeleton
- Relatively expensive and complex
- Unable to buy multiple sensors with budget

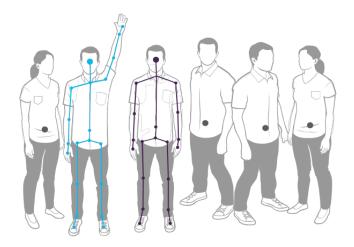
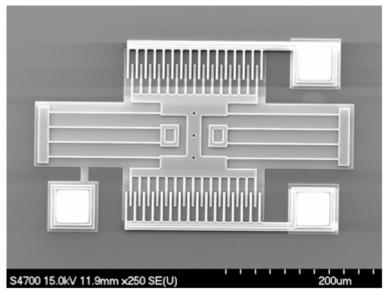
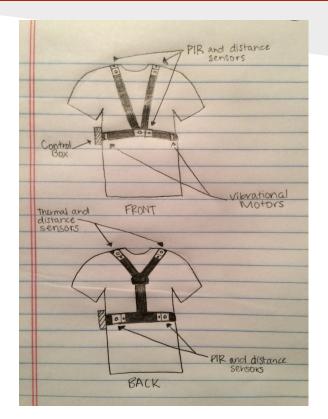



Image from Microsoft

### MicroElectroMechanical Systems

- Smaller, more reliable
- 4 components
  - Microsensors
  - Microactuators
  - Microstructures
  - Microelectronics
- Used in high precision, low volume equipment
- Not readily available to consumers





Image from MEMS & Nanotechnology Exchange

### Design Matrix - Sensors

| Sensor            | Weight |                   |    |                 |    |      |    |
|-------------------|--------|-------------------|----|-----------------|----|------|----|
| Criteria (weight) |        | PIR with Distance |    | 3D Depth Sensor |    | MEMS |    |
| Accuracy          | 30     | 3                 | 18 | 4               | 24 | 3.5  | 21 |
| Field of View     | 30     | 5                 | 30 | 2               | 12 | 3    | 18 |
| Cost              | 25     | 4                 | 20 | 2               | 10 | 1    | 5  |
| Size              | 10     | 3                 | 6  | 4               | 8  | 5    | 10 |
| Safety/Aesthetics | 5      | 3                 | 3  | 2               | 2  | 5    | 5  |
| Total             | 100    | 77                |    | 56              |    | 59   |    |

# Prototype Design

- GoPro chest mount
- PIR sensors
- Omron thermal sensors
- Directional vibrations
- Control box



# Future Work

- Purchase materials
- Restore materials
- Create circuit board
- Wire and program
- Test prototype

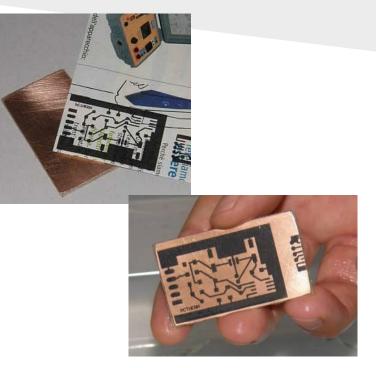



Image from http://www.riccibitti.com/pcb/pcb.htm

#### Acknowledgements

Clients: Dr. Webster, Department of Biomedical Engineering Dr. Hagi, King Abdulaziz University

Advisor: Dr. Meyerand, Department of Biomedical Engineering

BME Faculty: Dr. Puccinelli, Department of Biomedical Engineering

