

Wheelchair Tennis Adaptive Devices for Quad Tennis

Zach Alden, Leslie Franczek, David (Ben) Lahm, Will Bacon, Alyssa Walker

Client: Dan Dorszynski

Advisor: Ed Bersu

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Moving Forward
- Closing

Background - Becker's Muscular Dystrophy

• Genetic, progressive muscular disease ²

• Causes: insufficient use of dystrophin²

• Treatment: medication (steroids), surgery, and therapy ³

Figure 2: Paralympic Quad Tennis Players⁴

Background - Quad Tennis

• Eligibility for Play⁷

• Loss of function in one or both of the upper and

lower extremities

- Gameplay and Assistive Devices
 - \circ Warm Up⁷
 - Racket length (< 29 inches)⁸

Figure 3: Wheelchair Tennis Infographic⁵

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - **Final preliminary design**
- Moving Forward
- Closing

Current Devices

• Grip securing devices

- Athletic tape
- $\circ \quad \text{Velcro}$
- Rubber Bands

Figure 4: Athletic Tape Commonly Used to Secure Hand to Tennis Racket⁶

• Off-court serving systems

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Moving Forward
- Closing

Problem Statement

The client has **Becker Muscular Dystrophy** and plays in a quadriplegic tennis league. Players are allowed **assistive equipment** in the league. The client currently lacks **ideal grip strength** and a **consistent serve**. The client requires an **optimized tennis racquet grip** and **tennis ball serving system** in order to increase his level of play.

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - **Final preliminary design**
- Moving Forward
- Closing

Design Specifications - Serving System

- Mounted to wheelchair
- Easily detachable when not in use
- Provides consistent ball placement
- Adjustable
- Can't interfere with play

Design Specifications - Grip

- Maintains firm grip on racquet
- Allows full range of wrist motion
- Can't strain wrist
- Able to withstand tennis conditions

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - **Final preliminary design**
- Moving Forward
- Closing

Design Inspirations

• Projectile launching systems

- Potato cannon
- Nerf gun
- Football passing machine

- Grips and hand supports
 - Baseball gloves
 - Elastic wrist brace

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations

• Grip Support

- Preliminary designs
- **Design matrix**
- Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - **Final preliminary design**
- Moving Forward
- Closing

The Mold

Pros:

-Holds hand firmly to racket -Allows for different angles of grip

Cons:

- -May increase size of grip on racket
- -Finger positions is rigid
- -Relatively expensive to 3D print

Figure 5: The Mold Preliminary Model

Elastic Glove

Pros:

-Comfortable to wear -Secures all fingers in place

Cons:

-May be hard to get on

-Not very replaceable

Figures 6-7: Elastic Glove Preliminary Model

Spiderman Wrist Strap

Pros:

- -Simple fabrication
- -Replaceable parts

-Allows for variety of finger positions

Cons:

- -May affect wrist movement
- -May be tight on fingers

Figures 8-10: Spiderman Wrist Strap Preliminary Model

Racket Cords

Pros:

- -Flexibility in grip
- -Simple to fabricate
- -Replaceable

Cons:

-May affect interaction of racket with the ball -Elastic may lose flexibility over time

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations

• Grip Support

- Preliminary designs
- Design matrix
- Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - **Final preliminary design**
- Moving Forward
- Closing

Design Evaluations- Racket Grip

Criteria (weight)	Elas	Elastic Glove		Racket Cords		The Mold		Spiderman Wrist Strap	
Client Input (10)	4	8	5	10	3	6	4	8	
Client Safety (20)	5	10	4	8	5	10	3	6	
Comfort (20)	5	20	4	16	3	12	3	12	
Fabrication (10)	4	8	5	10	2	4	5	10	
Mobility (20)	3	12	4	16	3	12	3	12	
Cost (10)	4	8	5	10	3	6	4	8	
Durability (10)	3	12	3	12	4	16	3	12	
Total (100)	-	78	-	82	-	66	3	68	

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations

• Grip Support

- Preliminary designs
- **Design matrix**
- Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Moving Forward
- Closing

Figure 12: Racket Cords Preliminary Model

Final Preliminary Design-Racket Cords

- Winner:
 - Client Input
 - Fabrication
 - Mobility
 - Cost

• Total score: 82

Figure 13: Preliminary Prototype of Racket Cords Design

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design

• Serving System

- Preliminary designs
- **Design matrix**
- Final preliminary design
- Moving Forward
- Closing

Ball Launcher Preliminary Design

Compressed Air Cannon

Pros:

- -Consistent means of launching the tennis ball
- -Readily accessed by client during game play
- -Easy to attach and remove from chair
- -Adjustable launch height
- -Automatic reloading system

Cons:

- -Increased fabrication costs and difficulties
- -Increased maintenance requirements for client

Figures 14-15: Compress Air Cannon Preliminary Model

A= dual Spring launching System cylinder

B= pulley C= Cable D= electric Winch E= feeding tube

Ball Launcher Preliminary Design

Compressed Spring Launch

Pros:

-Mechanical launch system -Powered by wheelchair battery

Cons:

-Easy to break due to launch stress and forces -Harder for client to reload

Ball Launcher Preliminary Design

Caster Wheel System

Pros:

-Existing design currently used in most tennis ball launchers -Powered by wheelchair battery

-Spinning wheels may create hazard -Warm up time necessary to launch -Too powerful

Figures 18-19: Caster Wheel System Preliminary Model

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design

• Serving System

- Preliminary designs
- Design matrix
- **Final preliminary design**
- Moving Forward
- Closing

Design Evaluations- Serving System

Criteria (weight)	"Air Com	Cannon"- pressed Air	"The Cast	Launcher"- er Wheels	"The Spring Gun"- Compressed Springs	
Client Input (10)	5	10	4	8	5	10
Client Safety (20)	4	16	3	12	3	12
Accuracy/Precision (15)	5	15	4	12	4	12
Fabrication (10)	3	6	2	4	3	6
Ease of Use (15)	5	15	3	9	4	12
Cost (10)	3	6	2	4	3	6
Durability (10)	4	8	4	8	3	6
Adjustability (10)	4	8	3	6	3	6
Total (100)	-	84	2	63	-	70

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design

• Serving System

- Preliminary designs
- **Design matrix**
- Final preliminary design
- Moving Forward
- Closing

Final Preliminary Design-Compressed Air Cannon

- Winner:
 - Client Safety
 - Accuracy/Precision
 - Ease of Use
 - Durability
 - Adjustability
- Tied:
 - Client Input
 - \circ Fabrication
 - Cost
- Total Score: 84

Figure 20: Compressed Air Cannon Preliminary Model-

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design

Moving Forward

• Closing

Moving Forward

- Materials
 - Compressed Air
 - CO_2 tank or air compressor?
 - Racket Cords
 - Best elastic fiber?
- Design
 - Design for easy attachment/detachment
 - Fitting designs to wheelchair/tennis racket

Moving Forward

- Fabrication
 - Compressed Air
 - Connecting tube system?
 - Racket Cords
 - Base- 3D print or clamp?
- Testing
 - Compressed Air
 - Must reliably supply ball at consistent serving height
 - Racket Cords
 - Must maintain grip under force of ball hitting racket

- Background
- Current Devices
- Problem Statement
- Design Specifications
- Design Inspirations
- Grip Support
 - Preliminary designs
 - **Design matrix**
 - Final preliminary design
- Serving System
 - Preliminary designs
 - **Design matrix**
 - **Final preliminary design**
- Moving Forward
- Closing

Acknowledgements

- Dan Dorszynski
- Ed Bersu

References

- 1. "Becker Muscular Dystrophy (BMD) | Muscular Dystrophy Association," *Muscular Dystrophy Association*. [Online]. Available: https://www.mda.org/disease/becker-muscular-dystrophy. [Accessed: 09-Oct-2016].
- 2. "Muscular Dystrophy: Hope Through Research," U.S National Library of Medicine. [Online]. Available: http://www.ninds.nih.gov/disorders/md/detail_md.htm#257433171. [Accessed: 11-Oct-2016].
- 3. "Becker Muscular Dystrophy Treatment," *Healthline*. [Online]. Available: http://www.healthline.com/health/beckers-muscular-dystrophy#treatment6. [Accessed: 11-Oct-2016].
- 4. Grombkowski, Dennis. Aug. 2012. London.
- 5. "London 2012 Paralympics: Wheelchair Tennis Guide." *The Telegraph*. Telegraph Media Group, 26 Aug. 2012. Web. 13 Oct. 2016.
- 6. "2012 London Paralympics Day 7 Wheelchair Tennis." *Zimbio*. Getty Images Europe, 4 Sept. 2012. Web. 13 Oct. 2016.
- "International Tennis Federation Rules and Regs." [Online]. Available: http://www.itftennis.com/wheelchair/organisation/rules-regs.aspx. [Accessed: 12-Oct-2016].
- "Resources | USTA Friend at Court," Resources | USTA. [Online]. Available: https://www.usta.com/adult-tennis/usta-league/resources/. [Accessed: 12-Oct-2016].

Questions/comments?