Continuous Monitoring of Asthma Control

Leader: Tim Lieb

Communicator: Luke Le Clair

BSAC: Luke DeZellar BWIG: Ryan Opansky BPEG: Roberto Romero

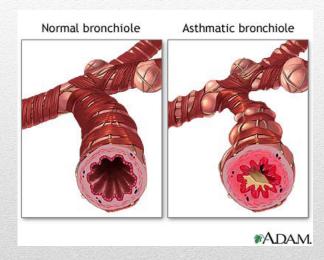
Client: Dr. Sameer Mathur, MD, PhD

School of Medicine and Public Health

Advisor: Professor Willis J. Tompkins, PhD

Department of Biomedical Engineering

Overview


- -Problem statement
- -Background material
- -Product design specification PDS
- -Design features considered
- -Design matrix
- -Future work
- -References and acknowledgements

Problem Statement

- Don't experience symptoms for two days
- Up to 20% drop in lung efficiency
- Designing a new asthma shirt
- Measures wheezing, coughing, respiratory rate
- Can let patient know in advance of attack

Background: Asthma

- Chronic disease where bronchioles constrict
- Coughing, wheezing, shortness of breath, and chest tightness
- Anti-inflammatory drugs
- Increase in overall Asthma patients
- Severe asthma patients account for a huge proportion of medical cost
- Exacerbation- severe asthma attack

Background: Current Methods

- Spirometer
- Thermistor
- Stethoscopes

Limitations:

- Can not self diagnose
- Must come into hospital/clinic

Client Requirements

- Focus on one aspect of the shirt
- Start with listening to lung sounds
 - Coughing
 - Wheezing
 - Respiratory rate
- Run/collect data for 4hrs

Product Design Specifications

- Performance Requirements
- Accuracy and Reliability
- Operating Environment
- Standards and Specifications

Design Features Considered

Thermistor bands

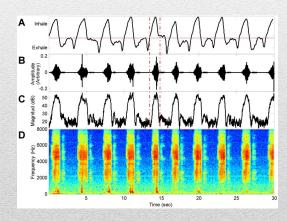
- Measures lung capacity and breathing rate
- To be incorporated later

Spirometry/FEV1

- Not continuous
- Typically used after symptoms appear

Design matrix

Design	Thermistor Mask		Microphone		Electronic Stethoscope	
Criteria (weight)			•			
Patient comfort (25)	2/5	10	4/5	20	4/5	20
Effectiveness (20)	2/5	8	4/5	16	4/5	16
Ease of Use (20)	2/5	8	4/5	16	4/5	16
Cost (15)	5/5	15	5/5	15	1/5	3
Adjustability (10)	3/5	6	4/5	8	3/5	6
Safety (10)	4/5	10	5/5	10	5/5	10
Total	55		85		71	


Future Work

For this semester:

- Select casing and circuit for microphone
- Determine thresholds for diagnosis

Beyond this semester:

- Resistor band for tidal volume
- 24/7 application of device

References & Acknowledgements

http://www.aaaai.org/conditions-and-treatments/asthma

http://www.sciencedirect.com/science/article/pii/S014067360669288X

Questions?