

Automated Quality Assurance System for Clinical CT Systems

BME 400

December 14, 2016

Team Leader: Heather Shumaker

Communicator: Connor Ford

BSAC: Sam Brenny

BPAG, BWIG: Rachel Reiter

Client:

Prof. Timothy Szczykutowicz
Dept. of Radiology & Medical Physics

Advisor:

Prof. John Webster
Dept. of Biomedical Engineering

 1

Abstract

Computed tomography (CT) machines are tested regularly to ensure the machines are

calibrated and functioning properly. Each time a scanner is tested, a medical physicist

must conduct numerous tests to assess each component of the machine and the images

it produces. The physicist must then record all testing results by hand and generate a

report based on the results. The report outlines each testing procedure used by the

physicist and the results of each test. These reports are sent to service technicians who

replicate the tests to determine which adjustments need be made to the machine.

Currently, there are no standard protocols for CT quality assurance testing. Due to the

inconsistency in quality assurance reports, miscommunication between the technicians

and the physicists is common. Any misinterpretation of the reports can delay CT

adjustments, creating a problem for the entire facility. In order to expedite and standardize

CT quality assurance testing, a software program was created to accept user input,

automate calculations and CT image analysis, and generate testing reports. The program

consists of a graphical user interface created in MATLAB and will help reduce

communication issues as well as significantly decrease the time and effort involved in CT

quality assurance testing.

 2

Table of Contents

Introduction ...4

Motivation ...4

Competing Designs ...4

Problem Statement ..4

Client Information ..5

Background ..5

Computed Tomography ..5

CT Quality Assurance Tests ...5

Design Specifications ..6

Preliminary Designs ..7

Design 1: Multi-GUI ..7

Design 2: Text Document ..7

Design 3: Master GUI ..8

Preliminary Design Evaluation ..8

Design Criteria..9

Ease of Use ... 9

Degree of User Interaction .. 10

Modularity ... 10

Speed ... 10

Safety ... 11

Cost .. 11

Proposed Final Design .. 11

Fabrication & Development.. 12

Materials ... 12

Methods .. 12

Final Prototype... 13

Basic Information ... 13

Safety .. 13

Artifacts ... 13

Noise ... 14

LCD .. 14

CT Number ... 14

CT Uniformity ... 15

Monitor ... 15

Beam Width ... 16

Protocol Review ... 17

 3

Gantry Tilt .. 17

Slice Width ... 18

Dose .. 18

LaTeX ... 19

Testing ... 19

Results ... 20

Algorithm Design.. 20

ROI Evaluation.. 21

Pixel to Distance Calibration .. 21

Image Angle Calculation .. 21

ROI Center to Isocenter Distance Calculation ... 22

Discussion .. 22

Challenges ... 22

Relevance .. 22

Ethics ... 23

Future Work ... 23

Conclusion ... 24

References ... 25

Glossary ... 26

Appendices .. 28

A. Product Design Specification .. 28

B. Materials.. 31

C. Semester Schedule ... 31

D. Project Schedule & Responsibilities .. 32

E. Panel Layouts ... 33

F. Source Code ... 40

 4

Introduction

Motivation

Quality assurance1 (QA) of computed tomography (CT) machines is a very important

process for the radiologist and medical physicists who use the machines. Physicians

make diagnoses based on the images they see, and they rely heavily on the fact that they

are actually seeing the regions the machine indicates they are seeing. Our motivation

involves streamlining the testing and reporting process to save time for both the medical

physicist and service technician. This goal of this project is to develop a computer

program that will be used for quality assurance testing. This program will allow for a

universal and standard reporting system as opposed to varying report formats and tests

depending on the specialists, machines, and facilities involved.

Additionally, our program will have the ability to look back on results of previous scans

and include trend lines to see if certain characteristics of the machine are declining below

desired values. This feature can help the medical physicist decide which parameters to

pay attention to and can prevent scanner issues from becoming too serious. Lastly, our

program will greatly improve communication between medical physicists and service

technicians. This will ultimately reduce the time it takes to fix any issues with the CT

machine once the medical physicist sends out a report.

Competing Designs

Two commercially available CT QA software programs include Image Owl and PIPSpro.

Both of these programs highlight their database and trending capabilities, along with other

advanced features such as built-in test types and cloud-based services [1,2]. However,

their complexity comes with a trade-off in the form of reduced flexibility and higher cost.

More details about these products can be found in the Product Design Specification in

Appendix A.

Problem Statement

CT machines are carefully tested on a daily, weekly, monthly, and annual basis. Each

time a CT machine is tested, many components of the machine are analyzed to ensure

the machine is properly calibrated and working correctly. The complexity of the testing

procedures makes CT quality assurance testing and reporting an extremely time

consuming task. The results of each test are recorded manually and entered into

spreadsheet-based reporting tools.

1 Note: All italicized terms are further defined in the glossary at the end of the report.

 5

The reports and testing procedures often vary between medical physicists making it

difficult for the results to be replicated by CT service technicians. The two main goals of

this project are to create standardized testing protocols for use within the facility and to

automate the reporting process. The client would like a software program capable of

reading DICOM images from various quality assurance tests, evaluating the images with

minimal user interaction, generating a report from the results, and writing the results to a

database to track scanner performance over time.

Client Information

Dr. Szczykutowicz is an Assistant Professor in the University of Wisconsin School of

Medicine and Public Health Departments of Radiology, Medical Physics, and Biomedical

Engineering. He received his undergraduate degree in physics and earned his Master's

and Ph.D. in medical physics at the University of Wisconsin-Madison. Dr. Szczykutowicz

is involved in several clinical and research activities including optimizing CT scan

protocols, patient dose monitoring, and developing protocol management methodologies.

We will be assisting him in creating a program for optimizing the reporting process for CT

quality assurance testing and standardizing the format and protocols used for these

reports [3].

Background

This design project aims to expedite the testing and reporting process currently used for

testing the quality and performance of computed tomography machines.

Computed Tomography

Computed tomography (CT) scans combine X-ray images accumulated from multiple

angles to create cross sectional images of a target object through digital computer

processing [4]. This type of scan has “revolutionized diagnostic radiology over the past

three decades” [5]. CT scans provide physicians with valuable information regarding the

anatomy and structure of human tissue and organs without the need to make incisions.

A disadvantage of CT scans includes the dose of radiation the machine sends through

the patient. The radiation can potentially be harmful if the dose is too large or if a patient

receives a large number of scans.

CT Quality Assurance Tests

Quality assurance tests are performed on CT machines to validate whether they are

functioning properly or if a certain part of the machine requires repair. The machines have

 6

various tests that are required at different time intervals [6]. There are simpler tests

performed daily, more complicated tests performed weekly and monthly, and rather

extensive tests performed on an annual basis. Daily tests, for example, may include

multiple series of helical and axial scan evaluations with parameters such as detector

coverage, speed, rotation time, and slice thickness. Annual tests may include artifact

testing, noise and CT number uniformity, laser consistency, couch movement and

levelness, dose, beam width, and gantry tilt, among others [7].

Image phantoms are objects used to evaluate CT machine performance that can be

designed to mimic human or animal tissue. Phantoms can be used to test for position

verification, slice width, and scan incrementation, among other characteristics [8].

Phantoms can be developed with different design interests in mind. These can include

designs optimized for tests to ensure accurate and proper scanning for human scans,

and also phantoms optimally designed for scans of small animals such as mice. This is

important because human diseases can be modeled in small rodents and research

studies are supplemented with CT scans of these disease-ridden animals [9].

There are a variety of different quality assurance manuals that outline the different tests

that can be performed and their significance. The main goal for CT scans is to produce

quality diagnostic images at the lowest possible radiation dose [10]. This can only be

achieved if quality assurance tests are performed to check whether the expected radiation

doses are actually observed.

Design Specifications

The client would like a software program capable of reading DICOM images from various

quality assurance tests, evaluating the images with minimal user interaction, generating

a report from the results, and writing the results to a database to track scanner

performance over time. Ideally, the program will be packaged as an executable for

distribution and will be capable of displaying machine trends in a chart. For further

explanation of the design specifications, please refer to the Product Design Specifications

in Appendix A.

 7

Preliminary Designs

Design 1: Multi-GUI

Using MATLAB’s graphical

user interface (GUI) system, a

program will be created

capable of receiving user

input, performing automatic

calculations, and analyzing

images. The code will be

compiled into a single

executable that is universally

compatible with any

operating system. The

“Home Page” of the CT

Report Builder will allow the user to select a DICOM image or a specific test to analyze

the data received from a CT system. Once a test is selected, a new GUI will appear with

the input parameters for the specified test, as seen in Figure 1. After all desired tests and

calculations are conducted based on the input parameters, the GUI will create a formatted

text document with a full report on a specific CT scan.

Design 2: Text Document

Design 2 features a PDF or Word

document template. The template will

have a section for each test that is

performed and will have a fill-in-the-

blank format. This design may also

feature checkboxes and other options

for user input, as seen in Figure 2.

Once, the template is filled in, it will be

used to generate a text or word

document containing the testing

protocols and results. The document

can alternatively be printed and used in

hard-copy format.

Figure 1. Representation of Design 1 showing multiple

GUIs open at once.

Figure 2. Design 2 featuring a PDF or Word

format document of a CT Report.

 8

Design 3: Master GUI

Design 3 will have the same

functionality as Design 1.

However, all the testing

protocols and information will be

contained in a single master

GUI. Each test will remain in an

individual panel that will become

visible and editable when

selected from the drop down bar

in the top left corner, as seen in

Figure 3. Alternatively, the user

can select another test at any

time and the GUI will

automatically update its input

parameters and save previous

test data. The drop down bar,

save, and export button will

always be visible at the top of the GUI. The export button will allow the user to generate

a report at any time and the save button will allow the user to save data during each step.

This software design will allow the user to enter all testing information in a single program

with a simple and user-friendly interface. Finally, all the testing results are saved to a

database where the information can be accessed to display testing trends of certain

parameters from a CT machine over time.

Preliminary Design Evaluation

To assess the feasibility and effectiveness of each of our three designs, we developed a

design matrix to evaluate each design on its ease of use, degree of user interaction,

modularity, speed, safety, and cost. The evaluation and description of each criterion are

detailed in Figure 4.

Figure 3. A representation of the dynamic

functionalities of the Master GUI in Design 3.

 9

Figure 4. Design Matrix

Design Design 1 Design 2 Design 3

Criteria

(Weight) Multi-GUI

Text Document

Master GUI

Ease of

Use (30)
4/5 24 3/5 18 5/5 30

Degree of

User

Interaction

(25)

5/5 25 0/5 0 5/5 25

Modularity

(20)
2/5 8 0/5 0 4/5 15

Speed (15) 3/5 9 0/5 0 5/5 15

Safety (5) 5/5 5 5/5 5 5/5 5

Cost (5) 5/5 5 5/5 5 5/5 5

Total (100) 76 28 95

Design Criteria
The design criteria used to assess the feasibility and effectiveness of our designs includes

ease of use, degree of user interaction, modularity, speed, safety, and cost. Safety and

cost were required criteria and the other four were created to assess the most important

features of our designs.

Ease of Use

A logical and intuitive program is crucial to the success of providing effective quality

assurance to the CT machine and images. The user conducting the various tests requires

a sleek, yet simple environment to input and manipulate data and ultimately create a

concise final report. The program must be visibly pleasing and contain a structured

workflow that allows variability for different test sets. The final product must be easily

obtainable and should require minimal effort to download and install, packaged with all

necessary libraries in order to offer standalone functionality on all types of computers.

 10

Rationale: Design 2 is bulky and tedious to use, requiring the user to complete the full

report. Design 1 and 3 are far easier to use, but Design 3 has all the information, tests,

and functionalities contained in a single interface, which greatly increases the ease of

use.

Degree of User Interaction

The overall goal of this project is to decrease the time and effort it takes to generate

testing reports. We would like this program to be automatic with minimal user interaction.

The user will need to enter all parameters from the test and then, ideally, the program

should be capable of processing all data and performing the necessary calculations

automatically.

Rationale: Using MATLAB to calculate data based on user input makes Designs 1 and 3

exponentially easier to use compared to Design 2; this significantly reduces the degree

of user interaction. In addition, automatically creating and storing reports in a database

will decrease the overall time and effort of testing and reporting.

Modularity

The code format is important, not only for ease of development and debugging, but also

for future alterations. As new testing requirements and methods change, certain portions

of the code must be easily accessible for modifications. This aspect of the design is

essential for implementation of an open-source application that can be modified by the

user.

Rationale: Unlike the single program featured in Design 3, Design 1 would require multiple

files, figures, and GUIs for each test, which could cause issues when debugging and

modifying code. Additionally, there may be complications in packaging Design 1 into a

universal executable due to the multiple program files.

Speed

It is important that CT machines are tested on a regular basis to ensure all functions are

working properly for research and patient imaging. Because these tests are performed so

often, it is important for the program to process data and generate testing reports very

quickly. A quick turnaround is essential in order for the CT machines to be adjusted before

further use.

Rationale: MATLAB’s capability to perform complex calculations and the simple user

interface of Design 3 makes this design the most ergonomic and effective method to

create CT scan reports.

 11

Safety

Care should be taken to minimize visual strain, such as using sufficiently large font size

and bright colors. Additionally, the overall accuracy and reliability of the program affects

the calibration of the CT scanner, which ultimately contributes to patient safety.

Rationale: Safety is a required design criterion.

Cost

Many CT scans are conducted daily and in rapid succession, so the efficiency at which

quality assurance tests can be completed greatly influences cost of use. The speed at

which CT scans can be analyzed will cut into cost. In addition, the designs require third-

party software, which can vary in cost but is free for UW students and staff.

Rationale: Cost is a required design criterion.

Proposed Final Design

Our team chose to pursue Design 3, which consists of a single GUI featuring multiple

panels and a drop-down bar to select the type of test. This design was chosen for its

compactness, user-friendly interface, and low degree of user interaction. This design was

chosen over the multi-GUI design for its increased speed, modularity, and ease of

distribution.

We concluded that this design would be faster than the multi-GUI because, unlike the

multi-GUI design, the single GUI is contained in one program and will not generate

additional windows or programs. It will also be easier to distribute and implement future

modifications because all of the code is contained within a single program. If changes

need to be made to the multi-GUI it is likely that the user would have to search through

several programs to make the desired change. Furthermore, with multiple GUIs such as

in Design 1, data would have to be shared between multiple programs, adding an

additional challenge to the software fabrication. Overall, Design 3 meets all of the design

specifications provided by the client and will feature a seamless user interface, automated

calculations and image analysis, and historical scanner trending. A block diagram of the

proposed final design can be seen in Figure 5.

 12

Figure 5. A block diagram of the final proposed design. This includes a main menu with the option to create
a new test or load previous testing parameters, a drop-down menu to select the type of test, and multiple
panels that become visible when selected by the drop-down menu.

Fabrication & Development

Materials

The materials used in the fabrication of this design project include MATLAB, a software

program licensed by MathWorks, and LaTeX, a software system for document formatting.

Each team member used the University’s computer labs or his or her own computer to

develop the code for the final program. The materials, in further detail, can be found in

Appendix B.

Methods

To create the framework for the program, we met with the client to discuss the desired

capabilities of the program. The client created a spreadsheet detailing each section of the

code to correspond to each type of quality assurance test performed. We used the

spreadsheet to make a skeleton for the program by creating “panels” for each section of

the code. The sections of code were divided among three team members to match each

member’s skillset. The remaining team member was assigned to the LaTeX code

specifically. Each team member worked on his or her sections of the code independently.

Throughout the semester, we met with the client to discuss our questions and receive

feedback on our existing work. When all sections of the GUI were completed individually,

the sections were seamlessly combined in the “master” GUI into their respective panels.

To view the project schedule, please refer to Appendix C.

 13

Final Prototype

The final prototype consists of a single graphical user interface developed in MATLAB.

The program functionality is broken up into individual panels, each capable of accepting

user input, performing calculations, or analyzing testing results. The program currently

has thirteen panels. Following are detailed descriptions of each panel’s features and

functionality. Please see Appendix D for individual responsibilities regarding the panels

and Appendix E for images of the panels during program use.

Basic Information

The basic information panel requires user input relating to the basic information of the

test. Examples of the information include the testing date, scanner type and location, the

facility contact information, and the physicist contact information. If information is stored

in the DICOM header of a CT image, then the program will acquire that information

automatically.

Safety

This panel consists of a series of questions regarding the room set-up safety precautions.

Some of these questions include the functionality of the “X-Ray On” light in various

locations, the ability to disable couch movement, and proper intercom performance and

volume. Each question requires a Yes/No/NA selection with an optional comment box for

additional observations to be noted.

Artifacts

Artifacts are often present in clinical CT scans due to unforeseen circumstances that

occur during the initial acquisition of data. Analyzing a CT image for artifacts is essential

in the quality assurance process. Calculating the standard deviation of the region where

the artifact is present is useful for diagnosing and fixing the problem. The artifacts panel

allows the user to draw a circular region of interest (ROI) on a selected DICOM image

and then calculates the pixel values and the standard deviation of these pixels for each

ROI. When an image is selected, the code automatically obtains DICOM header

information and is utilized for calculations. For example, the slice thickness is used to

determine pixel width in millimeters and then calculates the distance of the ROI from the

isocenter.

 14

Noise

Noise is always present and is an uncontrollable source of error in CT data acquisition.

As a result, calculations must be completed to correct and properly document the

magnitude of this source of error. This panel performs calculations of the standard

deviation are conducted from a uniform data set to quantitatively determine the noisiness

of the data. A DICOM image must be uploaded in order to document noise information.

These calculations are saved and documented in the final report for further analysis.

LCD

The low contrast detectability (LCD) panel of the code allows the user to select two

images. The rest of the calculations are executed through code provided by the client.

Figure 6 shows that the code produces a plot featuring the low contrast detectability of

the selected images.

Figure 6. The LCD panel produces a plot of the low contrast detectability of the images. This plot was
produced using two example images and does not accurately represent typical data.

CT Number

This portion of the code allows the user to browse for a DICOM image and draw a circular

ROI over a portion of the image. The program automatically computes the CT number of

the pixels inside the ROI, displays it to the user, and saves it to the program. This panel

functions similarly to the CT Uniformity panel in Figure 7 and the Artifacts and Noise panel

mentioned above.

 15

CT Uniformity

The CT Uniformity panel functions similar to the Artifacts, Noise, and CT Number panels

and allows the user to browse for a DICOM image and then draw a circular ROI around

a certain region of the image. The program computes the standard deviation of the pixels

inside each ROI and displays these to the user while saving them to the program. The

CT uniformity panel is displayed in Figure 7.

Figure 7. The CT Uniformity panel of the program has buttons to allow the user to browse for an image
and place ROIs on certain parts of image. The program calculates the standard deviation of the pixel
values inside each ROI and displays them to the right. Note that this image does not have any inserts
and was used for demonstration purposes.

Monitor

The monitor panel is used to assess the quality of the screen's display. First, a test pattern

must be selected from the drop-down menu. Options include, ‘SMPTE Pattern’, ‘All Black

Image’, ‘All White Image’, or ‘Other’. If ‘Other’ is selected, a new field will appear for the

user to specify the test pattern name. A series of questions about the test pattern image

must then be answered with a Yes/No/NA selection and optional comment. For example,

using the SMPTE test pattern pictured in Figure 8, the user must assess whether the 0%-

100% patches of grayscale (outlined in blue in Figure 8), are all distinguishable.

Additionally, the 0/5% and 95/100% patches (outlined in red in Figure 8), must each

contain a discernible square within the patch. Lastly, to assess screen luminance, the

 16

user must adjust the screen brightness to its minimum level, enter the screen luminance

at five locations (the center of the screen and the four corners), and average the recorded

values. This process is then repeated with the screen brightness at its maximum level.

The program uses the average minimum and maximum luminance values to compute the

nonuniformity of the display brightness with Equation 1.

% Difference = 200 ∗ (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛) / (𝐿𝑚𝑎𝑥 + 𝐿𝑚𝑖𝑛)

Equation 1. Nonuniformity of display brightness. Lmax and Lmin represent the

average maximum and minimum screen luminance, respectively.

Figure 8. SMPTE Test Pattern. Widely used testing pattern for the evaluation of display systems for medical

diagnostic imaging. Most important pattern components for CT QA include the 0-100% patches outlined in

blue in addition to the 0/5% and 95/100% patches outlined in red.

Beam Width

The beam width panel allows the user to calculate the width of the x-ray beams. Strips of

paper are exposed to x-ray beams, which create a darkened region on each strip. The

width of each darkened region is calculated by 1) drawing a line over a known distance

on a ruler as seen in Figure 9.1, 2) typing the known distance in a pop-up window, 3)

asking the user to draw a line over the darkened region of each strip of paper, 4)

calculating the intensity profile of the region covered by the line as seen in Figure 9.2, 5)

calculating the points of the maximum intensity and half of the maximum intensity, 6)

 17

calculating the beam widths based on the corresponding intensities and their location on

the image, and 6) relating the pixel widths to millimeters using the calibration factor.

Figure 9.1. The width of the darkened portion of
each strip represents the beam width. The user
calibrates the pixels

Figure 9.2. The intensity profile of the beam width
of the first strip. This prompts the user to select the
max intensity and min intensity.

Protocol Review

Protocol review is required to ensure the diagnostic image quality is achieved with the

lowest dose of radiation possible. Examples of protocols that require annual review

include pediatric head, pediatric abdomen, adult head, adult abdomen, high resolution

chest, and brain perfusion [11]. Protocol parameters are programmed into the machine

and subject to adjustment whenever under review. This panel is designed to document

these changes by allowing the user to enter the protocol name, flag it as ‘Okay’, ‘Needs

Attention’, or ‘Changed during Survey’, and indicate the changes implemented and/or

needed in the corresponding comment section. This can be performed for up to six

protocols.

Gantry Tilt

This portion of the code computes the gantry tilt by calculating the angles between five

lines that were created on paper by the x-ray beams. The program prompts the user to

draw a line parallel to the top of the paper to calibrate for zero degrees, as seen in Figure

10. The program calculates the 90 angle based on the user-selected 0 angle. The user

then draws a line over each beam to calculate the angle relative to the 90 line. Lastly,

the program displays the angles to the user, calculates the percent difference between

the calculated and nominal angle values, and saves the data to the program.

 18

Figure 10. The user draws a line over the top of the piece of paper. This represents the 0 line. Then the

user snaps a line over each beam to calculate the angle between the beam and the 90 line. The angles

are displayed on the right and the percent difference between the calculated angle and nominal angle is
also displayed.

Slice Width

This portion of the program allows the user to browse for a CT image and gets the slice

width by extracting information from the DICOM image header. The slice width is the width

of the portion of the patient that was imaged during the scan. The slice width value is

returned to the user and saved to the program.

Dose

Dose is evaluated by measuring the radiation exposure with a dosimeter probe. The

probe is placed in or on the phantom, a scan is performed, the exposure is then measured

by the dosimeter and entered into the program by the user. This process is performed

three times with the probe in the center of the phantom and three more times with the

probe on the phantom’s surface. The center and surface values are averaged separately

and used to calculate the CT Dose Index (CTDI100) from the averaged exposure values

using Equation 2 and user entered beam width. Both CTDI100,center and CTDI100,surface are

used in the program’s calculation of the weighted CTDI (CTDIw) with Equation 3. Lastly,

 19

the user enters the CTDIw displayed on the CT scanner’s screen so the percent difference

between the scanner and dosimeter dose measurements can be determined.

Note: If the user already has the CTDIw measurement from the dosimeter, therefore not

needing the intermediate calculations, this value can be entered directly.

CTDI100 = (Average Dose 100) / Beam Width

Equation 2. CTDI100 calculation. The average dose is multiplied by the CTDI

subscript, in this case 100, and divided by the beam width to determine CTDI.

CTDIw =
1

3
CTDIcenter +

2

3
CTDIsurface

Equation 3. CTDIw calculation. The center and surface CTDI values are

weighted differently and summed to determine the weighted CTDI.

LaTeX

LaTeX is a document preparation system that creates richly formatted PDF files. When

the user decides to export their results from the report builder program, MATLAB writes

all of the user-inputted information and test results into a text file that is properly formatted

for LaTeX. This process involves taking in all of the variables from the various panels and

placing them into the text file using proper LaTeX syntax so that when the text file is sent

through LaTeX, the PDF can be created correctly. If a certain image is desired to be

included in the report, the MATLAB code will find the full link to where that image is stored

in the user’s computer and will print the link in correct syntax to the text file. The benefit

of using this system to create the final report is that it will always be formatted in the same

way. This creates a standardized format for the report which will help service technicians

working on the CT machines. They will always know where to look for the results of a

given test, and they will be more familiar with the full set of testing processes as the same

procedures will be performed for each test and will be documented in a consistent

manner.

Testing

The program will be tested by having volunteer testers with knowledge in the field of

quality assurance for CT systems use the program and fill out a qualitative and

quantitative evaluation of both the functionality and ease of use of the program. The

protocol will have specific questions about the various panels regarding how intuitive they

 20

are to use and will include questions where the testers have to rate specific aspects of

the program on a scale from zero to ten. In addition to the numeric rankings, the testers

will have the option to make specific comments on any aspects of the program as they

see fit. All of the numeric rankings will be put through statistical analysis to determine

which aspects of the program need the most improvement and which aspects performed

well. In addition, the tester will write down how long it took for them to create their report

using the program and compare it to the time it would take them to create it manually, as

one goal of the project is to vastly expedite the test report building process.

The results are expected to inform us on how intuitive the program is to use as a full

quality assurance test report builder. The results will give insight into the potential time

savings that using the program will introduce to the process as well as the potential

convenience of having standardized reports regardless of who performed the testing or

who used the program. Another goal of the testing protocol is to determine if there are

any errors in the functionality or glitches in the program that would result in failure to

reliably create an accurate report. Based on the results received, we will be able to

improve the program and talk with the testers to decide on which changes and additions

should be made to increase functionality and ease of use.

Results

The program we created will significantly improve the quality assurance reporting process

by improving communication between the physicist and service technicians and by

reducing the time it takes to create these reports. Prior to our program, the medical

physicist who conducts the quality assurance test would perform all calculations manually

or through several different software programs including ImageJ and ROI contouring

software programs. Our program has combined the capabilities of these programs into a

single GUI by developing algorithms for these functions from scratch. Our program also

improves upon these capabilities by performing calculations automatically within the

program while requiring minimal user interaction. The program will be distributed

throughout research groups in the Wisconsin Institute for Medical Research and will

eventually be distributed to other medical physicists outside of UW - Madison. Through

the program developed by our team, we hope to significantly reduce the time and effort it

takes to perform QA tests on CT machines and also aim to standardize QA reporting to

improve the communication between the people involved in testing.

Algorithm Design

There were four main algorithms designed for this program from scratch by our team

members. One for the beam width panel, one for the gantry tilt panel, one for the artifacts

 21

panel, and one used in the CT number, CT uniformity, noise, and artifacts panels. The

source code for these algorithms can be found in Appendix F.

1. ROI evaluation

2. Pixel to distance calibration

3. Image angle calculation

4. ROI center to isocenter distance calculation

ROI Evaluation

The ROI evaluation component of the program allows the user to load a DICOM image

and draw a circular ROI on the image. The code extracts the locations of the image

surrounded by the ROI and correlates the locations to pixel values of the original image.

The code then calculates either the mean or standard deviation of the pixel values inside

each ROI. This algorithm is used for computation in the noise, artifacts, CT number, and

CT uniformity panels. Previously, the client performed these calculations through an

external software program - the need for this ROI program is eliminated through this ROI

evaluation algorithm.

Pixel to Distance Calibration

The pixel to distance calibration algorithm is used in the beam width section of the

program. This part of the code relates a known distance in millimeters to a distance in

pixels of an image and creates a calibration factor to convert pixel distance to distance in

millimeters. The images used for the beam width panel must include a ruler. The program

prompts the user to draw a line over a known distance (e.g. from 1 to 2 cm on the ruler)

and enter the known distance in centimeters. The program correlates this known distance

to the number of pixels on the drawn line and creates the calibration factor for pixel to

millimeter calculations. Previously, ImageJ was used for this test and all calibration

calculations had to be done manually. This algorithm completely eliminates the use of

ImageJ in the beam width testing protocol.

Image Angle Calculation

The image angle calculation works by allowing the user to draw a reference line on an

image. The code converts the line drawn into a vector. Then the user can place a line

over the angle of interest and the code will convert this line to a vector and then compute

the angle between the two vectors using dot and cross product calculations. This

algorithm is used in the gantry tilt panel to calculate the angle of the gantry (the torus-

shaped portion of the CT machine) relative to 0 and 90.

 22

ROI Center to Isocenter Distance Calculation

This algorithm is used in the artifacts panel to calculate the distance from a selected

artifact to the center of the image. The code for this algorithm uses the ROI evaluation

functionality mentioned above to determine the pixels in the ROI. Then the code

determines the center pixel of each ROI and calculates the distance from that pixel to the

center of the entire DICOM image.

Discussion

Challenges

Throughout development of the program, we faced various challenges and setbacks. The

decision to stick with using one universal GUI for the program led to logistical issues within

MATLAB. There was a lot of variable name matching that needed to be accounted for as

well as making sure all panels were visible on the screen at the right time and invisible

otherwise. Through rigorous iterations of running through the code and checking variable

names, we were able to match all variables between the GUI and the written MATLAB

code to create a fully functional program. A challenge that we will have in the future

involves other interested parties that may want the ability to add a different panel to the

program. As the program is structured currently, it would be difficult to add in a new panel

without previous knowledge of how the program is structured and how variables need to

be named to interact with each other. This problem can be solved by making a video

tutorial and user manual outlining how to create a new panel and integrate it into the

existing program.

Another challenge we have is receiving DICOM image info from tags that come along

with a DICOM image. They are not labeled in an obvious manner so it will take additional

research and comparison to see which data is available for us to input into the program

automatically versus which information the user will have to manually input. Finally, the

greatest challenge will be the distribution and implementation of the design to those in the

relevant field and ensuring universal compatibility.

Relevance

Traditionally, it can take a lot of time for a machine with a functional problem to be tested

by a physicist and repaired by a service technician. Creating a program that automates

and accelerates this process is highly valued as it reduces the amount of time a machine

spends in repair. This can be the difference between a patient being able to receive a CT

scan on Tuesday instead of Thursday during a week, which can speed up the patient’s

diagnosis and recovery process. Additionally, the ability for this program to standardize

 23

the reporting process helps service technicians and physicists alike have a better and

more transparent understanding of how the tests are conducted. Instead of varying from

physicist to physicist and machine to machine, the reports are consistent across

machines and facilities allowing for smoother communication from all pertinent parties

trying to fix a machine. Finally, there is no universal quality assurance system in medical

imaging and each physicist, service technician, and doctor uses different methods and

procedures for CT calibration and repair. The program that was developed will allow

professionals in the medical field to report diagnostic information of medical images in a

standardized format. This will create a more uniform procedure and allow doctors across

the country to share information faster.

Ethics

The final software program will be used for research and clinical purposes. With that in

mind, it is imperative that the program performs accurate calculations and image analysis.

The values and test results exported by the program must be verified to ensure they are

not a result of faulty program function. Failure to do so could lead to inaccurate

assessment of the CT machine, resulting in improper diagnoses and/or additional testing,

which can increase patient exposure to harmful x-rays. Furthermore, there will be no

malicious code in the downloadable software package. Overall, the code will perform the

functions it cites accurately without harming the computer. This plays a vital role in proper

calibration on the CT scanner and ultimately influences patient safety.

Future Work

Next semester, our team would like to focus mainly on testing and improving the program.

We intend to develop a user-experience survey to distribute with the program. Our client

offered to present our product for beta testing at a radiology conference he attends

annually to obtain valuable feedback from prospective users. After forming a testing

protocol and collecting the testing data, it will need to be analyzed to determine the

necessary improvements for the next generation of the program. Additionally, the updated

program will include more tests and functionality. A key supplement in functionality

includes a database trending addition to the program. This function would allow users to

bring up results from previous tests on the same machine, and graph those results over

time. It will be able to show if a certain parameter of the machine is trending towards

failure, and would allow service technicians to maintain that aspect of the machine before

it actually becomes a problem.

We also plan on working closely with the client to develop a comprehensive user manual

to not only outline the program’s operation, but also document standardized procedures

 24

for collecting the data entered into to the program. The final goal is to publish the details

of our program and findings in a scientific journal.

Conclusion

The overall goal of this design project is to develop a software program that aids in CT

quality assurance testing by decreasing the time and effort involved and by developing

standardized testing protocols to eliminate communication issues. The program was

developed using MATLAB and LaTeX to accept user input, perform calculations and

tests, and ultimately create a PDF file. The file can then be sent to service technicians so

they can make any necessary repairs to the CT machine in question. The user interface

allows for a highly intuitive ability to input information about the machine that is

significantly faster than the traditional methods of creating the PDF file manually. As with

any open source software development, the program will always be available for

improvement and updates as other parties desire to add functionality to the program.

 25

References
[1] “Comprehensive QA Services in the Cloud,” Image Owl, Inc. [Online]. Available:

http://www.imageowl.com/. [Accessed: 09-Oct-2016].

[2] “PIPSpro Software,” Standard Imaging, Inc.. [Online]. Available:
http://www.standardimaging.com/qa-software/pipspro-software/. [Accessed: 09-Oct-2016].

[3] “Faculty and Staff,” University of Wisconsin School of Medicine and Public Health.
[Online]. Available: https://www.radiology.wisc.edu/people/facultyContent.php?vaultID=552

[4] “CT Scan,” Mayo Clinic [Online]. Available:
http://www.mayoclinic.org/tests-procedures/ct-scan/basics/definition/prc-20014610

[5] G. T. German, “Fundamentals of Computerized Tomography: Image reconstruction
from projection” Springer 2nd edition, 2009.

[6] S. Mutic et al., “Quality assurance for computed-tomography simulators and the
computed tomography-simulation process,” Medical Physics 30 (10). Oct. 2003.

[7] T.P. Szczykutowicz. “CT Scanner Annual Testing: East Clinic UWHC DHO,”
UW-Madison Dept. of Radiology. Madison, WI. July, 2016.

[8] D. J. Goodenough, “Catphan 500 and 600 Manual” Salem, NY. 2006.

[9] L. Y. Du et al., “A quality assurance phantom for the performance evaluation of
volumetric micro-CT systems,” Phys. Med. Biol. 52 7087. Nov. 2007.

[10] D. D. Cody et al., “Computed Tomography: Quality Control Manual,” ACR, 2012.

[11] D. Cody, "CT Protocol Review: Practical Tips for the Imaging Physicist," in The

American Association of Physicists in Medicine, 2013. [Online]. Available:

http://amos3.aapm.org/abstracts/pdf/72-20324-242393-90804.pdf. Accessed: Dec. 5, 2016.

 26

Glossary

Artifact: an aberration in a CT image often caused by poor calibration

CT dose index (CTDI): standardized measure of radiation dose of a CT scanner which allows for

comparison between different scanner doses, a number subscript indicates the length of the

ionization chamber in mm (e.g. CTDI100 is the CTDI measurement for a 100mm ionization tube)

CT number: a variable that describes the radiodensity of a pixel in a DICOM image

DICOM images: DICOM stands for “Digital Imaging and Communications in Medicine” and is the

standard image type for storing and transmitting medical imaging information and scans. DICOM

images store information pertinent to the scan such as scan location and many other important

parameters.

Dose: the concentration of energy deposited in the tissue from exposure to ionizing radiation

Executable: a file that can be run by any computer without downloading other software

Gantry: the torus-shaped component of the CT machine that the patient slides through

Gantry tilt: the angle between the vertical plane and the x-ray beam of the gantry

Graphical user interface (GUI): a user interface that allows user to interact with a program by

buttons, graphs, and text

Isocenter: the point in an image that is in the exact center both horizontally and vertically

LaTeX: a document-preparation system for typesetting and formatting text

MATLAB®: a high-level programming language for technical computing

Open-source application: software with the source code available to the public for editing

Panel: a MATLAB GUI component that allows code with different functionalities to be

compartmentalized into panels that can be made visible or invisible with the click of a button

Phantom: a cylinder filled with water or another liquid that is made to mimic the human body used

for scanner testing

Slice width: the thickness of the part of the body/phantom that is being imaged

 27

SMPTE test pattern: a standard developed by the Society of Motion Picture and

Television Engineers used for testing and evaluating the display quality of medical

imaging devices

 28

Appendices
A. Product Design Specification

Title: Automated Quality Assurance System for Clinical CT Systems

Client: Prof. Timothy Szczykutowicz

Advisor: Prof. John Webster

Team Leader: Heather Shumaker

Communicator: Connor Ford

BPAG & BWIG: Rachel Reiter

BSAC: Sam Brenny

Function:

A software program will be designed and built to aid in computed tomography (CT) quality

assurance testing and reporting. The software will process testing results and export them

to a report analyzing the results and reporting corrections that must be made to the CT

system. The report will also specify how the tests are conducted.

Client requirements:

The client would like the software to be capable of:

● Processing DICOM (Digital Imaging and Communication in Medicine) images that

represent quality assurance test scans

● Automatically analyze images

● Create reports from the test outputs into easy to read report using LaTex [1]

● Write test results to a database

● Ability to pull up past results in trends chart

Preferably, the program will consist of a graphical user interface (GUI) with a user-friendly

interface. Ideally, the program will be capable of doing several automated calculations for

the client.

Design requirements:

The program will be developed in MATLAB and be exported to LaTex and then to a PDF.

The client prefers that the program be capable of allowing user input of test values in

whichever order the user chooses.

1. Physical and Operational Characteristics

a. Performance requirements: The program should have capabilities for a variety

of tests, including daily, monthly, and annual tests. All uploaded images and/or

data should have the ability to be saved in separate subfolders in reference to the

report. The text file needs to be accessible to accommodate the addition of

alternative tests for specialized scanners.

 29

b. Safety: N/A

c. Accuracy and Reliability: The software must be reliable in the sense that the

program functions as designed during each use. The reports must be generated

consistently throughout the use of the program and the program must function

without crashes or bugs. The calculations computed by the program must be

consistent and accurate. A pop-up window should appear as the calculations are

being done for analysis by the user to ensure sanity of the results before

compilation in the PDF file.

d. Life in Service: The program will be used indefinitely with the potential for

modifications and improvements in the future.

e. Shelf Life: The program should be able to run indefinitely.

f. Operating Environment: The program will mainly be used by radiologist and

physicists at the WIMR. However, the software may be shared in the future with

other radiologists via forum boards.

g. Ergonomics: The software should have a user-friendly interface that makes

sense to the user. All text within the program and the PDF output must be well

organized and readable.

h. Size: N/A

i. Weight: N/A

j. Materials:

● MATLAB

● LaTex

● Sample testing data and reports will be provided

● CT scanner available

k. Aesthetics, Appearance, and Finish:

The finished software package should have a clean and pleasing interface for the

user. The software may be packaged into an executable for users without

MATLAB.

2. Production Characteristics

a. Quantity: One software program will be created.

b. Target Product Cost: $0 or cost of MATLAB licensing fees

3. Miscellaneous

a. Standards and Specifications: The tests outlined in the exported PDF will

outline the testing procedures and the testing results. The goal of this project is to

automate the testing report to increase the consistency of the CT quality

assurance testing reports in the department.

 30

b. Customer: The customer requests for the code to be well commented and easily

modulated so others can easily understand and modify for their own use.

Additionally, the user should be able to enter testing data in any order they

choose.

c. Patient-related concerns: In order to achieve an accurate CT scan with proper

dosing, the CT scan must be well tested prior to use. This program will help

analyze CT system testing results and compile them in a report detailing the

testing procedures and results. This report will be sent to technicians to fix the CT

scanner.

d. Competition: There are two software programs on the market that have many of

the design specifications. These programs include ImageOwl and PIPSpro.

Image Owl is a cloud based system, which facilitates the retrieval of data

and tracking trends over time, along with other features such as mobile apps [2].

While these features are convenient, they also greatly increase the price.

Customization is another source of expense. Given their data analyses are

specialized for CatphanⓇ and TomophanⓇ phantoms, their more comprehensive

and customizable testing options are more expensive [2].

PIPSpro, created by Standard Imaging Inc., provides quantitative analysis

of scanner performance on a variety of phantoms sold by the same company [3].

Additionally, complexity of the program itself requires training to use properly [3].

As with Image Owl, the program does not lend itself to alterations and testing

protocols are not included in the report.

References

[1] T. Szczykutowicz. “CT Scanner Annual Testing: East Clinic UWHC DHO (GE LS16 Pro)”

Department of Radiology, University of Wisconsin-Madison. Jul. 2016.

[2] “Comprehensive QA Services in the Cloud,” Image Owl, Inc. [Online]. Available:

http://www.imageowl.com/. [Accessed: 09-Oct-2016].

[3] “PIPSpro Software,” Standard Imaging, Inc.. [Online]. Available:

http://www.standardimaging.com/qa-software/pipspro-software/. [Accessed: 09-Oct-2016].

 31

B. Materials

Description Supplier Part/Model # Link to Part Qty Date Price TOTAL

MATLAB MathWorks UW-Madison
License

https://www.mathwor
ks.com/products/mat
lab/

NA NA $0.00 $0.00

LaTeX LaTeX
Project

LaTeX Project
Public License

https://www.latex-
project.org

NA NA $0.00 $0.00

TOTAL $0.00

C. Semester Schedule

Task Sept Oct Nov Dec

23 30 14 19 21 28 4 11 18 25 2 9 15

Project R&D

Research X X

Design Alternatives and

Matrix X X

Decide Final Design X

Design Development X X X X X

Deliverables

Progress Reports X X X X X X X X X X X X

PDS X

Preliminary Presentations X

Final Deliverables X

Meetings

Client X X X X

Team X X X X X X X X X X X

Advisor X X X X X X X X X X X X

Website

Update X X X X X X X X X X X X X

https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/
https://www.latex-project.org/
https://www.latex-project.org/

 32

D. Project Schedule & Responsibilities

Below is the project schedule for the last month of the semester.

Date Priorities

11/18 Client Meeting

11/21-11/23 Fix panels with client feedback

11/30 Have all panels complete

11/30 Team Meeting - 8pm
Put all panels into program
Start making program look nice

12/2 Team meeting - generate export text file section

12/5 Have program complete
Begin Paper
Begin Poster

12/5 Have poster complete → send to printing

12/9 Poster Due

12/12 Have paper complete - final edits begin

12/14 Final Deliverables
Notebooks and final paper and peer reviews

The GUI was divided into 13 panels. Here is the list of individual contributions to the project.

Panel
Team Member
Responsible

 Panel
Team Member
Responsible

Basic Information

Team

LCD

Heather

Safety CT Number

Artifacts

Sam

CT Number Uniformity

Noise Beam Width

Monitor

Rachel

Gantry Tilt

Dose Slice Width

Protocol Review LaTeX Code Connor

 33

E. Panel Layouts

Main Menu

Basic Information

 34

Safety

Artifacts

 35

Noise

LCD (Low contrast detectability)

 36

CT Number

CT Uniformity

 37

Monitor

Beam Width

 38

Protocol Review

Gantry Tilt

 39

Slice Width

Dose

 40

F. Source Code

Note: only the code that performs calculations/functions is displayed below

 Loading Logo %%

 Basic Information Panel

 Safety Panel

 Artifacts Panel

 Fill in parameters

 Loop code for creating ROIs

 LCD Panel

 CT Number Panel

 Loop code for creating ROIs

 CT Number Uniformity Panel

 Loop code for creating ROIs

 Noise Panel

 Loop code for creating ROIs

 Monitor Panel

 Dose Panel

 hide fields to calculate CTDIw %%%%%%%%%%%%%

 hide option to enter CTDIw %%%%%%%%%%%%%%%%%%

 Slice Width Panel

 Beam Width Panel

 Receive user input for line & intensity profile

 Full-width half max

 Gantry Tilt Panel

 Get +30 angle

 Get +15 angle

 Get -15 angle

 Get -30 angle

 Protocol Review Panel

 Basic Information

 Safety

 Artifacts

 LCD

 Noise

 CT Number

 CT Uniformity

 Slice Width

function varargout = CT_QA_Report_Builder(varargin)
% CT_QA_REPORT_BUILDER MATLAB code for CT_QA_Report_Builder.fig
% CT_QA_REPORT_BUILDER, by itself, creates a new CT_QA_REPORT_BUILDER or raises the existing
% singleton*.
%
% H = CT_QA_REPORT_BUILDER returns the handle to a new CT_QA_REPORT_BUILDER or the handle to
% the existing singleton*.
%
% CT_QA_REPORT_BUILDER('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in CT_QA_REPORT_BUILDER.M with the given input arguments.
%
% CT_QA_REPORT_BUILDER('Property','Value',...) creates a new CT_QA_REPORT_BUILDER or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before CT_QA_Report_Builder_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to CT_QA_Report_Builder_OpeningFcn via varargin.

 41

%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help CT_QA_Report_Builder

% Last Modified by GUIDE v2.5 09-Dec-2016 00:12:51

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @CT_QA_Report_Builder_OpeningFcn, ...
 'gui_OutputFcn', @CT_QA_Report_Builder_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before CT_QA_Report_Builder is made visible.
function CT_QA_Report_Builder_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;

Loading Logo %%
axes(handles.axes_logo);
imshow('CTQALogo.png');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes CT_QA_Report_Builder wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

 42

function varargout = CT_QA_Report_Builder_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on selection change in main_dropbar.
function main_dropbar_Callback(hObject, eventdata, handles)
val = get(handles.main_dropbar,'value');
switch(val)
 case 1 % Do nothing, "Select test" option
 set(handles.logoPanel,'visible','on');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 2 % Display general info tab, hide rest
 set(handles.logoPanel,'visible','off');

 43

 set(handles.basicInformationPanel,'visible','on');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 3 % Display safety tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','on');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 4 % Display artifacts tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','on');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 5 % Display noise tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','on');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 6 % Display LCD tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');

 44

 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','on');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 7 % Display CT # tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','on');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 8 % Display CT # uniformity tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','on');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 9 % Display slice width tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','on');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 10 % Display gantry tilt tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');

 45

 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','on');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 11 % Display protocol review tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','on');
 set(handles.beamWidthPanel,'visible','off');

 case 12 % Display beam width tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','on');
 case 13 % Display monitor tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');
 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','on');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','off');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
 case 14 % Display dose tab, hide rest
 set(handles.logoPanel,'visible','off');
 set(handles.basicInformationPanel,'visible','off');
 set(handles.safetyPanel,'visible','off');
 set(handles.artifactsPanel,'visible','off');
 set(handles.LCDPanel,'visible','off');
 set(handles.CTNumPanel,'visible','off');

 46

 set(handles.CTUniformityPanel,'visible','off');
 set(handles.noisePanel,'visible','off');
 set(handles.monitorPanel,'visible','off');
 set(handles.sliceWidthPanel,'visible','off');
 set(handles.dosePanel,'visible','on');
 set(handles.gantryPanel,'visible','off');
 set(handles.protocolPanel,'visible','off');
 set(handles.beamWidthPanel,'visible','off');
end

Artifacts Panel

% --- Executes on button press in artifactsImageSelect.
function artifactsImageSelect_Callback(hObject, eventdata, handles)

%ask user to select DICOM image
[ImgName,ImgPath] = uigetfile('*.dicom');
%convert into full file name
ImgFullFile = fullfile(ImgPath,ImgName);
%make sure user selected file and updates GUI with Image selected
if isempty(ImgName)==0;
 info = dicominfo([ImgPath ImgName]);
 handles.pix = double(dicomread([ImgPath ImgName]));
end

Fill in parameters
setappdata(gcf,'ImgWidth',info.Width);
setappdata(gcf,'ImgHeight',info.Height);
setappdata(gcf,'PixSpace',info.PixelSpacing);

set(handles.axes_artifacts,'visible','on');
set(handles.artifactsDrawROI,'visible','on');
set(handles.artifactsPresentText,'visible','on');
set(handles.artifactsYN,'visible','on');
axes(handles.axes_artifacts)
imshow(handles.pix, []);

guidata(hObject,handles);

% --- Executes on button press in artifactsDrawROI.
function artifactsDrawROI_Callback(hObject, eventdata, handles)

%get image info loaded from previous function
ImgSave=getappdata(gca,'ImgLoad');
%Select region of interest on image, MUST right-click on ROI and press
%"create mask"

waitfor(msgbox('Drag mouse to draw an ROI.'));
string{1,1} = 'Standard deviations:';
set(handles.artifactsStdevText, 'string',string);

 47

Loop code for creating ROIs
Clear variables

 circle = [];
 roi = [];
 positions = [];
 pixels = [];

 circle = imellipse; % allows user to draw circle
 roi = createMask(circle); % matrix with 0s and 1s (1s are where user selected)
 k = 1;
 for j = 1:length(roi)
 v = find(roi(:,j) == 1);
 if isempty(v) == 0 %if vector is not empty
 l = length(v);
 positions(k:k+l-1,1) = v;
 positions(k:k+l-1,2) = j;
 k = k+l;
 end
 end
 % Get actual pixel values
 for m = 1:length(positions)
 pixels(m) = handles.pix(positions(m,1),positions(m,2));
 end
 %handles.roi(1:length(pixels),i) = pixels;
 handles.artifactsStdev = std(pixels);
 string{2,1} = num2str(handles.artifactsStdev,'%.2f');
 set(handles.artifactsStdevText, 'string', string);

waitfor(msgbox('Calculations complete.'));
ImgWidth= getappdata(gcf,'ImgWidth');
ImgHeight= getappdata(gcf,'ImgHeight');
PixSpace = getappdata(gcf,'PixSpace');
ImgXCenter= ImgWidth/2;
ImgYCenter= ImgHeight/2;
ROIy= round(mean(positions(:,1)));
ROIx = round(mean(positions(:,2)));
yDiff = abs(ImgYCenter-ROIy);
xDiff = abs(ImgXCenter-ROIx);
yCal = double(PixSpace(2)*yDiff);
xCal = double(PixSpace(1)*xDiff);

IsoDist = sqrt((yCal^2)+(xCal^2));

 guidata(hObject,handles);

LCD Panel
% --- Executes on button press in LCDBrowse.
function LCDBrowse_Callback(hObject, eventdata, handles)
[filename pathname] = uigetfile('*.dicom','Select 2 noise files.', 'multiselect','on');

if iscell(filename) == 0
 h1 = waitfor(msgbox('Please select 2 files.'));
 set(h1,'Deletefcn',@closeMsg);
 [filename pathname] = uigetfile('*.dicom','Select 2 noise files.', 'multiselect','on');
end
% Load image information
if iscell(pathname) == 0
 info = dicominfo([pathname filename{1}]);
 image1 = double(dicomread([pathname filename{1}]));
 image2 = double(dicomread([pathname filename{2}]));

 48

else
 info = dicominfo([pathname{1} filename{1}]);
 image1 = double(dicomread([pathname{1} filename{1}]));
 image2 = double(dicomread([pathname{2} filename{2}]));
end

% Show images
set(handles.axes_LCD1,'visible','on');
set(handles.axes_LCD2,'visible','on');
set(handles.axes_LCD1,'xtick',[], 'ytick',[])
set(handles.axes_LCD2,'xtick',[], 'ytick',[])
imagesc(handles.axes_LCD1, image1);
colormap('gray');
imagesc(handles.axes_LCD2, image2);

% Transformation from HU to mu
image1 = (image1+info.RescaleIntercept);
image2 = (image2+info.RescaleIntercept);

diffIm = image1 - image2;

%crop down to the middle part of the image
iminCropp = diffIm(128:389,128:389);
figure; imagesc(iminCropp);colormap('gray');

countt = 1;
for i=2:10 %ojbect diameter in mm
 iminCroppedBlurr = imfilter(iminCropp,fspecial('average',[round(i/info.PixelSpacing(1))
round(i/info.PixelSpacing(1))]),'same');
 plotter(countt) = (1*3.29*std2(iminCroppedBlurr(30:end-30,30:end-30)))/sqrt(2);
 countt = countt +1;
end
figure;plot(2:10,plotter);
grid on;
ylabel('% Contrast required for detection');
xlabel('Object Diameter (mm)');
title('Low Contrast Detectability (SNR = 3.29)','FontSize',20);
guidata(hObject,handles);

CT Number Panel
% --- Executes on button press in CTNumImageSelect.
function CTNumImageSelect_Callback(hObject, eventdata, handles)
[filename pathname] = uigetfile('*.dicom','Please select DICOM file.');

set(handles.CTNumDrawROI,'visible','on');
set(handles.axes_CTNum,'visible','on');
set(handles.CTNum_meanCT, 'string','');
info = dicominfo([pathname filename]);
%handles.pix = double(dicomread([pathname filename]));
handles.pix = double(dicomread([pathname filename])) + info.RescaleIntercept ;
% Fill in parameters
set(handles.CTNumMA, 'string',info.XrayTubeCurrent);
set(handles.CTNumSlice,'string',info.SliceThickness);
axes(handles.axes_CTNum)
imshow(handles.pix, []);
guidata(hObject,handles);

% --- Executes on button press in CTNumDrawROI.
function CTNumDrawROI_Callback(hObject, eventdata, handles)

 49

% Ask number of inserts so that user can draw that number of ROIs
num = inputdlg('Number of ROIs:');
num = str2double(num{1});
waitfor(msgbox('Drag mouse to draw an ROI.'));
string{1,1} = 'Mean CT Number:';
set(handles.CTNum_meanCT, 'string',string);

Loop code for creating ROIs
for i = 1:num
 % Clear variables
 circle = [];
 roi = [];
 positions = [];
 pixels = [];

 circle = imellipse; % allows user to draw circle
 roi = createMask(circle); % matrix with 0s and 1s (1s are where user selected)
 k = 1;
 for j = 1:length(roi)
 v = find(roi(:,j) == 1);
 if isempty(v) == 0 %if vector is not empty
 l = length(v);
 positions(k:k+l-1,1) = v;
 positions(k:k+l-1,2) = j;
 k = k+l;
 end
 end
 % Get actual pixel values
 for m = 1:length(positions)
 pixels(m) = handles.pix(positions(m,1),positions(m,2));
 end

 %handles.CTNum_roi(1:length(pixels),i) = pixels;
 handles.CTNum_mean(i,1) = mean(pixels);
 string{i+1,1} = num2str(handles.CTNum_mean(i),'%.2f');
 set(handles.CTNum_meanCT, 'string', string);

end
waitfor(msgbox('Calculations complete.'));
% handles.stdev are the standard deviations
guidata(hObject,handles);

CT Number Uniformity Panel

% --- Executes on button press in CTUniformityImageSelect.
function CTUniformityImageSelect_Callback(hObject, eventdata, handles)
[filename pathname] = uigetfile('*.dicom','Please select DICOM file.');
set(handles.CTUniformity_stdev, 'string','');
set(handles.axes_CTUniformity,'visible','on');
set(handles.CTUniformityDrawROI,'visible','on');
info = dicominfo([pathname filename]);
handles.pix = double(dicomread([pathname filename])) + info.RescaleIntercept ;
% Fill in parameters
axes(handles.axes_CTUniformity)
imshow(handles.pix, []);
guidata(hObject,handles);

 50

% --- Executes on button press in CTUniformityDrawROI.
function CTUniformityDrawROI_Callback(hObject, eventdata, handles)

% Ask number of inserts so that user can draw that number of ROIs
num = inputdlg('Number of inserts:');
num = str2double(num{1});
waitfor(msgbox('Drag mouse to draw an ROI.'));
string{1,1} = 'Standard deviations:';
set(handles.CTUniformity_stdev, 'string',string);

Loop code for creating ROIs
for i = 1:num
 % Clear variables
 circle = [];
 roi = [];
 positions = [];
 pixels = [];

 circle = imellipse; % allows user to draw circle
 roi = createMask(circle); % matrix with 0s and 1s (1s are where user selected)
 k = 1;
 for j = 1:length(roi)
 v = find(roi(:,j) == 1);
 if isempty(v) == 0 %if vector is not empty
 l = length(v);
 positions(k:k+l-1,1) = v;
 positions(k:k+l-1,2) = j;
 k = k+l;
 end
 end
 % Get actual pixel values
 for m = 1:length(positions)
 pixels(m) = handles.pix(positions(m,1),positions(m,2));
 end
 handles.roi(1:length(pixels),i) = pixels;
 handles.CTUniformity_standDeviation(i,1) = std(pixels);
 string{i+1,1} = num2str(handles.CTUniformity_standDeviation(i),'%.2f');
 set(handles.CTUniformity_stdev, 'string', string);
end
waitfor(msgbox('Calculations complete.'));
% handles.stdev are the standard deviations
guidata(hObject,handles);

Noise Panel

% --- Executes on button press in NoiseImageSelect.
function NoiseImageSelect_Callback(hObject, eventdata, handles)
[filename pathname] = uigetfile('*.dicom','Please select DICOM file.');
set(handles.Noise_stdev, 'string','');
set(handles.axes_Noise,'visible','on');
set(handles.NoiseDrawROI,'visible','on');
info = dicominfo([pathname filename]);
handles.pix = double(dicomread([pathname filename])) + info.RescaleIntercept ;
% Fill in parameters
axes(handles.axes_Noise)
imshow(handles.pix, []);
guidata(hObject,handles);

 51

% --- Executes on button press in NoiseDrawROI.
function NoiseDrawROI_Callback(hObject, eventdata, handles)

% Ask number of inserts so that user can draw that number of ROIs
num = inputdlg('Number of ROIs:');
num = str2double(num{1});
waitfor(msgbox('Drag mouse to draw an ROI.'));
string{1,1} = 'Standard deviations:';
set(handles.Noise_stdev, 'string',string);

Loop code for creating ROIs
for i = 1:num
 % Clear variables
 circle = [];
 roi = [];
 positions = [];
 pixels = [];

 circle = imellipse; % allows user to draw circle
 roi = createMask(circle); % matrix with 0s and 1s (1s are where user selected)
 k = 1;
 for j = 1:length(roi)
 v = find(roi(:,j) == 1);
 if isempty(v) == 0 %if vector is not empty
 l = length(v);
 positions(k:k+l-1,1) = v;
 positions(k:k+l-1,2) = j;
 k = k+l;
 end
 end
 % Get actual pixel values
 for m = 1:length(positions)
 pixels(m) = handles.pix(positions(m,1),positions(m,2));
 end
 handles.roi(1:length(pixels),i) = pixels;
 handles.Noise_standDeviation(i,1) = std(pixels);
 string{i+1,1} = num2str(handles.Noise_standDeviation(i),'%.2f');
 set(handles.Noise_stdev, 'string', string);
end
waitfor(msgbox('Calculations complete.'));
% handles.stdev are the standard deviations
guidata(hObject,handles);

Monitor Panel
% --- Executes on selection change in monitorTestPatternMenu.
function monitorTestPatternMenu_Callback(hObject, eventdata, handles)
contents = cellstr(get(hObject,'String'));
testPattern = contents{get(hObject,'Value')};

% allow the user to enter test pattern if 'Other' is selected from dropdown
if strcmp(testPattern,'Other') == 1;
 set(handles.monitorOtherTestPattern, 'visible', 'on');
 set(handles.monitorOtherTestPatternText, 'visible', 'on');
else
 set(handles.monitorOtherTestPattern, 'visible', 'off');
 set(handles.monitorOtherTestPatternText, 'visible', 'off');
end

 52

guidata(hObject,handles);

% --- Executes on button press in monitorUniformity.
function monitorUniformity_Callback(hObject, eventdata, handles)
% convert the max luminance enteries to doubles
maxCenter = str2double(get(handles.monitorQ5_center,'String'));
maxCorner1 = str2double(get(handles.monitorQ5_corner1,'String'));
maxCorner2 = str2double(get(handles.monitorQ5_corner2,'String'));
maxCorner3 = str2double(get(handles.monitorQ5_corner3,'String'));
maxCorner4 = str2double(get(handles.monitorQ5_corner4,'String'));
% convert the min luminance enteries to doubles
minCenter = str2double(get(handles.monitorQ6_center,'String'));
minCorner1 = str2double(get(handles.monitorQ6_corner1,'String'));
minCorner2 = str2double(get(handles.monitorQ6_corner2,'String'));
minCorner3 = str2double(get(handles.monitorQ6_corner3,'String'));
minCorner4 = str2double(get(handles.monitorQ6_corner4,'String'));

% combine the values into vectors for max amd min luminance, respectively
maxLum = [maxCenter maxCorner1 maxCorner2 maxCorner3 maxCorner4];
minLum = [minCenter minCorner1 minCorner2 minCorner3 minCorner4];

% calculate the uniformity percent difference
handles.monitorUniformPercentDiff = 200 * (max(maxLum) - min(minLum)) / (max(maxLum) + min(minLum));

% display the uniformity percent difference to 2 decimal places
set(handles.monitorUniformityText, 'String', ['% difference = ', num2str(handles.monitorUniformPercentDiff, '%0.2f'),
'%']);
guidata(hObject, handles);

Dose Panel

% --- Executes on selection change in dose_ctdiwOption.
function dose_ctdiwOption_Callback(hObject, eventdata, handles)
contents = cellstr(get(hObject,'String'));
ctdiOption = contents{get(hObject,'Value')};

% selection determines which fields are visible
if strcmp(ctdiOption,'Enter CTDIw') == 1;

hide fields to calculate CTDIw
 set(handles.doseWidthText, 'Visible' ,'Off');
 set(handles.doseWidth, 'Visible' ,'Off');

 set(handles.doseCenterMeasureText, 'Visible' ,'Off');
 set(handles.doseCenterMeasure1, 'Visible' ,'Off');
 set(handles.doseCenterMeasure2, 'Visible' ,'Off');
 set(handles.doseCenterMeasure3, 'Visible' ,'Off');
 set(handles.doseAvgCenterButton, 'Visible' ,'Off');
 set(handles.doseAvgCenter, 'Visible' ,'Off');
 set(handles.dose_ctdi100CenterButton, 'Visible' ,'Off');
 set(handles.dose_ctdi100Center, 'Visible' ,'Off');

 set(handles.doseSurfaceMeasureText, 'Visible' ,'Off');
 set(handles.doseSurfaceMeasure1, 'Visible' ,'Off');
 set(handles.doseSurfaceMeasure2, 'Visible' ,'Off');
 set(handles.doseSurfaceMeasure3, 'Visible' ,'Off');
 set(handles.doseAvgSurfaceButton, 'Visible' ,'Off');
 set(handles.doseAvgSurface, 'Visible' ,'Off');
 set(handles.dose_ctdi100SurfaceButton, 'Visible' ,'Off');
 set(handles.dose_ctdi100Surface, 'Visible' ,'Off');

 53

 set(handles.dose_ctdiw_calculated, 'Visible' ,'Off');
 set(handles.dose_ctdiwButton, 'Visible' ,'Off');
 %%%

 % allow user to ENTER value for ctdiw
 set(handles.dose_ctdiw_enteredText, 'Visible' ,'On');
 set(handles.dose_ctdiw_entered, 'Visible' ,'On');

 set(handles.doseDisplayedOnScannerText, 'Visible' ,'On');
 set(handles.doseDisplayedOnScanner, 'Visible' ,'On');

 set(handles.dosePercentDiffButton, 'Visible' ,'On');
 set(handles.dose_ctdiPercentDiff, 'Visible' ,'On');

elseif strcmp(ctdiOption,'Calculate CTDIw') == 1;

 % make fields available for user to CALCULATE ctdiw
 set(handles.doseWidthText, 'Visible' ,'On');
 set(handles.doseWidth, 'Visible' ,'On');

 set(handles.doseCenterMeasureText, 'Visible' ,'On');
 set(handles.doseCenterMeasure1, 'Visible' ,'On');
 set(handles.doseCenterMeasure2, 'Visible' ,'On');
 set(handles.doseCenterMeasure3, 'Visible' ,'On');
 set(handles.doseAvgCenterButton, 'Visible' ,'On');
 set(handles.doseAvgCenter, 'Visible' ,'On');
 set(handles.dose_ctdi100CenterButton, 'Visible' ,'On');
 set(handles.dose_ctdi100Center, 'Visible' ,'On');

 set(handles.doseSurfaceMeasureText, 'Visible' ,'On');
 set(handles.doseSurfaceMeasure1, 'Visible' ,'On');
 set(handles.doseSurfaceMeasure2, 'Visible' ,'On');
 set(handles.doseSurfaceMeasure3, 'Visible' ,'On');
 set(handles.doseAvgSurfaceButton, 'Visible' ,'On');
 set(handles.doseAvgSurface, 'Visible' ,'On');
 set(handles.dose_ctdi100SurfaceButton, 'Visible' ,'On');
 set(handles.dose_ctdi100Surface, 'Visible' ,'On');

 set(handles.dose_ctdiw_calculated, 'Visible' ,'On');
 set(handles.dose_ctdiwButton, 'Visible' ,'On');

hide option to enter CTDIw
 set(handles.dose_ctdiw_enteredText, 'Visible' ,'Off');
 set(handles.dose_ctdiw_entered, 'Visible' ,'Off');
 %%%

 set(handles.doseDisplayedOnScannerText, 'Visible' ,'On');
 set(handles.doseDisplayedOnScanner, 'Visible' ,'On');

 set(handles.dosePercentDiffButton, 'Visible' ,'On');
 set(handles.dose_ctdiPercentDiff, 'Visible' ,'On');
else
 % all fields are invisible if neither option is selected
 set(handles.doseWidthText, 'Visible' ,'Off');
 set(handles.doseWidth, 'Visible' ,'Off');

 set(handles.doseCenterMeasureText, 'Visible' ,'Off');
 set(handles.doseCenterMeasure1, 'Visible' ,'Off');
 set(handles.doseCenterMeasure2, 'Visible' ,'Off');

 54

 set(handles.doseCenterMeasure3, 'Visible' ,'Off');
 set(handles.doseAvgCenterButton, 'Visible' ,'Off');
 set(handles.doseAvgCenter, 'Visible' ,'Off');
 set(handles.dose_ctdi100CenterButton, 'Visible' ,'Off');
 set(handles.dose_ctdi100Center, 'Visible' ,'Off');

 set(handles.doseSurfaceMeasureText, 'Visible' ,'Off');
 set(handles.doseSurfaceMeasure1, 'Visible' ,'Off');
 set(handles.doseSurfaceMeasure2, 'Visible' ,'Off');
 set(handles.doseSurfaceMeasure3, 'Visible' ,'Off');
 set(handles.doseAvgSurfaceButton, 'Visible' ,'Off');
 set(handles.doseAvgSurface, 'Visible' ,'Off');
 set(handles.dose_ctdi100SurfaceButton, 'Visible' ,'Off');
 set(handles.dose_ctdi100Surface, 'Visible' ,'Off');

 set(handles.dose_ctdiw_calculated, 'Visible' ,'Off');
 set(handles.dose_ctdiwButton, 'Visible' ,'Off');

 set(handles.dose_ctdiw_enteredText, 'Visible' ,'Off');
 set(handles.dose_ctdiw_entered, 'Visible' ,'Off');

 set(handles.doseDisplayedOnScannerText, 'Visible' ,'Off');
 set(handles.doseDisplayedOnScanner, 'Visible' ,'Off');

 set(handles.dosePercentDiffButton, 'Visible' ,'Off');
 set(handles.dose_ctdiPercentDiff, 'Visible' ,'Off');
end
guidata(hObject,handles);

% --- Executes on button press in doseAvgCenterButton.
function doseAvgCenterButton_Callback(hObject, eventdata, handles)
% convert each center measurement to a double
center1 = str2double(get(handles.doseCenterMeasure1,'String'));
center2 = str2double(get(handles.doseCenterMeasure2,'String'));
center3 = str2double(get(handles.doseCenterMeasure3,'String'));
% average the center measurement values
avgCenter = mean([center1 center2 center3]);
% display the average value
set(handles.doseAvgCenter, 'String', num2str(avgCenter, '%0.2f'))
guidata(hObject, handles);
% --- Executes on button press in doseAvgSurfaceButton.
function doseAvgSurfaceButton_Callback(hObject, eventdata, handles)
surface1 = str2double(get(handles.doseSurfaceMeasure1,'String'));
surface2 = str2double(get(handles.doseSurfaceMeasure2,'String'));
surface3 = str2double(get(handles.doseSurfaceMeasure3,'String'));
% average the surface measurement values
avgSurface = mean([surface1 surface2 surface3]);
% display the average value
set(handles.doseAvgSurface, 'String', num2str(avgSurface, '%0.2f'))
guidata(hObject, handles);
% --- Executes on button press in dose_ctdi100CenterButton.
function dose_ctdi100CenterButton_Callback(hObject, eventdata, handles)
% access the beam width and average center measurement
beamWidth = str2double(get(handles.doseWidth,'String'));
avgCenter = str2double(get(handles.doseAvgCenter,'String'));
% calculate the CTDI100 center value
ctdiCenter = avgCenter*100/beamWidth;
% display the CTDI100 center value
set(handles.dose_ctdi100Center, 'String', num2str(ctdiCenter, '%0.2f'))
guidata(hObject, handles);

% --- Executes on button press in dose_ctdi100SurfaceButton.

 55

function dose_ctdi100SurfaceButton_Callback(hObject, eventdata, handles)
% access the beam width and average surface measurement
beamWidth = str2double(get(handles.doseWidth,'String'));
avgSurface = str2double(get(handles.doseAvgSurface,'String'));
% calculate the CTDI100 surface value
ctdiSurface = avgSurface*100/beamWidth;
% display the CTDI100 surface value
set(handles.dose_ctdi100Surface, 'String', num2str(ctdiSurface, '%0.2f'))
guidata(hObject, handles);

% --- Executes on button press in dose_ctdiwButton.
function dose_ctdiwButton_Callback(hObject, eventdata, handles)
% access both CTDI100 values
surface = str2double(get(handles.dose_ctdi100Surface,'String'));
center = str2double(get(handles.dose_ctdi100Center,'String'));
% calculate the CTDIw value
ctdiw = (2/3)*surface + (1/3)*center;
% display the CTDIw value
set(handles.dose_ctdiw_calculated, 'String', num2str(ctdiw, '%0.2f'))
guidata(hObject, handles);

% --- Executes on button press in dosePercentDiffButton.
function dosePercentDiffButton_Callback(hObject, eventdata, handles)
% access the correct CTDIw value based on option selected
if strcmp(get(handles.dose_ctdiw_calculated, 'visible'), 'on') == 1
 % use the CALCULATED CTDIw value if 'Calculate CTDIw' is selected
 ctdiw = str2double(get(handles.dose_ctdiw_calculated,'String'));
else
 % use the ENTERED CTDIw value if 'Enter CTDIw' is selected
 ctdiw = str2double(get(handles.dose_ctdiw_entered,'String'));
end
% access the value displayed on scanner
display = str2double(get(handles.doseDisplayedOnScanner,'String'));
% calculate the percent difference
percentDiff = (ctdiw - display)/display*100;
% display the percent difference
set(handles.dose_ctdiPercentDiff, 'String', [num2str(percentDiff, '%0.2f'), '%'])
guidata(hObject, handles);

% --- Executes on button press in doseSave.
function doseSave_Callback(hObject, eventdata, handles)

Slice Width Panel

% --- Executes on button press in sliceWidthBrowse.
function sliceWidthBrowse_Callback(hObject, eventdata, handles)
%browse for file
[filename pathname] = uigetfile('*.dicom','Please select DICOM file.');
%load dicom info
info = dicominfo([pathname filename]);
data = dicomread(info);

% If slice width = slice thickness
handles.sliceWidth_width=info.SliceThickness;

set(handles.sliceWidthInput, 'string', handles.sliceWidth_width);
guidata(hObject,handles);

% --- Executes on button press in sliceWidthSave.
function sliceWidthSave_Callback(hObject, eventdata, handles)

 56

handles.sliceWidth_width = get(handles.sliceWidthInput, 'string');
guidata(hObject,handles);

Beam Width Panel
% --- Executes on button press in beamWidthBrowse.
function beamWidthBrowse_Callback(hObject, eventdata, handles)
[filename pathname] = uigetfile('*.png','Please select an image file for beam width'); %get image
set(handles.axes_beamWidth,'visible','on');
axes(handles.axes_beamWidth);
handles.beamWidth_image = [pathname filename];
I = imread(handles.beamWidth_image);
imshow(I, 'InitialMagnification','fit'); %display image on axis
set(handles.beamWidthTextBox,'visible','on'); %Makes instruction text visible
set(handles.beamWidthCalibrate,'visible','on'); %makes calibrate button visible
guidata(hObject,handles);

% --- Executes on button press in beamWidthCalibrate.
function beamWidthCalibrate_Callback(hObject, eventdata, handles)
zoom reset
set(handles.beamWidthTextBox,'string','Please draw a line from two points of a known distance.');
waitfor(msgbox('Draw a line from the first point and then right-click to finish the line at the second point.'));
[x,y] = getline(handles.axes_beamWidth); %get user input from two points
pixels = sqrt((x(2)-x(1))^2 + ((y(2)-y(1))^2)); %calculate distance between two points
known_distance = cell2mat(inputdlg('Please enter the known distance (cm).'));
handles.beamWidth_calibrationFactor = str2double(known_distance) * 10 / pixels; %get calibration factor
set(handles.beamWidthTextBox,'string','Calibration factor calculated. Please reposition image and then select
Calculate Beam Width');
set(handles.beamWidthCalibrate,'string','Redo Calibration');
% Make next options visible
set(handles.beamWidthCalculate, 'visible','on');

% replot unzoomed image
axes(handles.axes_beamWidth);
image = imread(handles.beamWidth_image);
imshow(image, 'InitialMagnification','fit'); %display image on axis
%%%% handles.beam_calibrate is calibration factor %%%%%
guidata(hObject, handles);

% --- Executes on button press in beamwidthCalculate.
function beamWidthCalculate_Callback(hObject, eventdata, handles)
zoom reset
set(handles.beamWidthText,'string','');
set(handles.beamWidthTextBox,'string','');
num_widths = cell2mat(inputdlg('Please enter how many widths you will be calculating.'));
string{1,1} = 'Beam widths (mm):';
set(handles.beamWidthText,'string',string)

for i = 1:str2double(num_widths)

 % Clear variables
 minLoc = []; maxLoc = []; x = []; y = []; c = []; locFirstHalf = [];
 locSecondHalf = []; minsSecondHalf = []; minsFirstHalf = [];

Receive user input for line & intensity profile
 set(handles.beamWidthTextBox,'string',['Please draw a line for the width of beam ', num2str(i)]);
 % Get image profile
 [x,y,c] = improfile;

 57

 % Smooth with lowpass filter to make calculations easier
 c = smooth(c(:,1));
 % Plot intensity profile
 figure
 plot(c(:,1))
 title('Please select the max y & average min y values of the intensity curve.')
 pause(0.000001)
 % Get user chosen max
 [~,maxIntensity] = ginput(2);
 close %close figure
 % Find half max
 halfMax = round((maxIntensity(1)+maxIntensity(2))/ 2);
 % Find locations of halfMax
 vec = c(:,1) - halfMax;
 [a,~] = find(abs(vec) < 10);
 % separate vec into 2 portions for down slope & up slope
 p = diff(a);
 [loc,~]= find(p>3);

Full-width half max
Take averages of the two portions to find average 2 locations for

 firstHalf = length(a(1:loc));
 secondHalf = length(a(loc+1:end));
 for m = 1:firstHalf
 minsFirstHalf(m,1) = abs(vec(a(m)));
 minsFirstHalf(m,2) = a(m);
 end

 for k = 1:secondHalf
 minsSecondHalf(k,1) = abs(vec(a(firstHalf+k)));
 minsSecondHalf(k,2) = a(firstHalf+k);

 end

 % Get right side value & location
 mLoc1 = min(minsFirstHalf(:,1));
 l1 = find(minsFirstHalf(:,1) == mLoc1)
 locFirstHalf = minsFirstHalf(l1, 2);
 % Get left side location
 mLoc2 = min(minsSecondHalf(:,1));
 l2 = find(minsSecondHalf(:,1) == mLoc2)
 locSecondHalf = minsSecondHalf(l2,2);

 % Convert locations to actual coordinates
 xCoord(1) = x(locFirstHalf);
 yCoord(1) = y(locFirstHalf);
 xCoord(2) = x(locSecondHalf);
 yCoord(2) = y(locSecondHalf);
 % Plot points
 hold on
 plot(handles.axes_beamWidth, xCoord(1),yCoord(1),'k+', 'linewidth', 2);
 plot(handles.axes_beamWidth, xCoord(2),yCoord(2),'k+', 'linewidth', 2);

 % Calculate distance between two points
 pixels = sqrt((xCoord(2)-xCoord(1))^2 + ((yCoord(2)-yCoord(1))^2));
 handles.beamWidth_beamWidths(i) = pixels*handles.beamWidth_calibrationFactor;
 % Update text box with beam widths
 string{i+1,1} = num2str(handles.beamWidth_beamWidths(i),'%.3f');

 58

 set(handles.beamWidthText,'string',string)

end
set(handles.beamWidthTextBox,'string','Beam widths acquired.');
pause(0.001);
% replot unzoomed image
axes(handles.axes_beamWidth);
imshow(handles.beamWidth_image, 'InitialMagnification','fit'); %display image on axis
%%%%%% handles.beam_beamWidths is the beam widths %%%%%%%
guidata(hObject,handles);

% --- Executes on button press in beamWidthManual.
function beamWidthManual_Callback(hObject, eventdata, handles)
prompt = {'Please enter the nominal beam widths.',' ',' ',' ',};
num_lines = 1;
default_ans = {'','','',''};
nominal = inputdlg(prompt,'Manual Beam Width',1,default_ans);
prompt2 = {'Please enter the vendor supplied beam widths.',' ',' ',' ',};
vendor = inputdlg(prompt2,'Manual Beam Width',1,default_ans);
prompt3 = {'Please enter the measured beam widths.',' ',' ',' ',};
measured = inputdlg(prompt3,'Manual Beam Width',1,default_ans);

for i = 1:4
 nom = str2num(nominal{i});
 vend = str2num(vendor{1});
 meas = str2num(measured{i});
 %measured beam widths
 handles.beamWidths_beamWidths(i,1) = meas;
 %percent diff between nominal and measured
 handles.beamWidth_beamWidths(i,2) = (abs((nom-meas)/meas)*100);
 % percent diff between vendor supplied and measured
 handles.beamWidth_beamWidths(i,3) = (abs((vend-meas)/meas)*100);

end

%%%% handles.beamWidth_beamWidths has all data %%%%%
guidata(hObject,handles);

% --- Executes on button press in beamWidthSave.
function beamWidthSave_Callback(hObject, eventdata, handles)

Gantry Tilt Panel
% --- Executes on button press in gantryTiltBrowse.
function gantryTiltBrowse_Callback(hObject, eventdata, handles)
[filename pathname] = uigetfile('*.png','Please select an image file for beam width'); %get image
set(handles.axes_gantryTilt,'visible','on');
axes(handles.axes_gantryTilt);
handles.gantryTilt_image = [pathname filename];
I = imread(handles.gantryTilt_image);
imshow(I, 'InitialMagnification','fit'); %display image on axis
set(handles.gantryTiltTextBox,'visible','on'); %Makes instruction text visible
set(handles.gantryTiltCalculate,'visible','on');
guidata(hObject, handles);

 59

% --- Executes on button press in gantryTiltManual.
function gantryTiltManual_Callback(hObject, eventdata, handles)

% --- Executes on button press in gantryTiltCalculate.
function gantryTiltCalculate_Callback(hObject, eventdata, handles)

zoom reset
set(handles.gantryTiltHelp,'visible','on')
set(handles.gantryTiltPercentDiffText,'string','');
set(handles.gantryTiltAngleText,'string','');

set(handles.gantryTiltTextBox,'string','Please draw a line over the top of the film for the 0 degree mark. Right click to
end line.');
[x,y] = getline(handles.axes_gantryTilt);
hold on
plot(handles.axes_gantryTilt,x,y,'k','linewidth',1)

v_0 = [(x(1)-x(2)) (y(1)-y(2)) 0]; %vector for 0 degrees
v_90 = [-(y(1)-y(2)) (x(1)-x(2)) 0]; %Find perpendicular line
string{1} = 'Angles (degrees):';
string2{1} = '% difference:';

Get +30 angle
set(handles.gantryTiltTextBox,'string','Please trace the +30deg line.');
[x,y] = getline(handles.axes_gantryTilt);
hold on
plot(handles.axes_gantryTilt,x,y,'r','linewidth',3)
v = [(x(1)- x(2)) (y(1)- y(2)) 0];
angle = atan2d(norm(cross(v,v_90)),dot(v,v_90));
handles.gantryTilt_angles(1,1) = angle;
string{2} = num2str(angle,'%.3f');
set(handles.gantryTiltAngleText,'string',string)

% Calculate percent difference
handles.gantryTilt_angles(1,2) = (abs((30-angle)/angle)*100);
string2{2} = num2str(handles.gantryTilt_angles(1,2), '%.3f');
set(handles.gantryTiltPercentDiffText,'string',string2)

Get +15 angle
set(handles.gantryTiltTextBox,'string','Please trace the +15deg line.');
[x,y] = getline(handles.axes_gantryTilt);
hold on
plot(handles.axes_gantryTilt,x,y,'r','linewidth',3)
v = [(x(1)- x(2)) (y(1)- y(2)) 0];
angle = atan2d(norm(cross(v,v_90)),dot(v,v_90)); %calc angle
handles.gantryTilt_angles(2) = angle;
string{3} = num2str(angle,'%.3f');
set(handles.gantryTiltAngleText,'string',string)

% Calculate percent difference
handles.gantryTilt_angles(2,2) = (abs((15-angle)/angle)*100);
string2{3} = num2str(handles.gantryTilt_angles(2,2), '%.3f');
set(handles.gantryTiltPercentDiffText,'string',string2)

 60

Get -15 angle
set(handles.gantryTiltTextBox,'string','Please trace the -15deg line.');
[x,y] = getline(handles.axes_gantryTilt);
hold on
plot(handles.axes_gantryTilt,x,y,'r','linewidth',3)
v = [(x(1)- x(2)) (y(1)- y(2)) 0];
angle = -atan2d(norm(cross(v,v_90)),dot(v,v_90)); %calc angle
handles.gantryTilt_angles(3) = angle;
string{4} = num2str(angle,'%.3f');
set(handles.gantryTiltAngleText,'string',string)

% Calculate percent difference
handles.gantryTilt_angles(3,2) = (abs((-15-angle)/angle)*100);
string2{4} = num2str(handles.gantryTilt_angles(3,2), '%.3f');
set(handles.gantryTiltPercentDiffText,'string',string2)

Get -30 angle
set(handles.text2,'string','Please trace the +15deg line.');
[x,y] = getline(handles.axes_gantryTilt);
hold on
plot(handles.axes_gantryTilt,x,y,'r','linewidth',3)
v = [(x(1)- x(2)) (y(1)- y(2)) 0];
angle = -atan2d(norm(cross(v,v_90)),dot(v,v_90)); %calc angle
handles.gantryTilt_angles(4) = angle;
string{5} = num2str(angle,'%.3f');
set(handles.gantryTiltAngleText,'string',string)

% Calculate percent difference
handles.gantryTilt_angles(4,2) = (abs((-30-angle)/angle)*100);
string2{5} = num2str(handles.gantryTilt_angles(4,2), '%.3f');
set(handles.gantryTiltPercentDiffText,'string',string2);

set(handles.gantryTiltTextBox,'string','Angles acquired.');

% replot unzoomed image
axes(handles.axes_gantryTilt);
I = imread(handles.gantryTilt_image);
imshow(I, 'InitialMagnification','fit'); %display image on axis
%%%% handles.gantryTilt_angles is the gantry angles %%%%
guidata(hObject,handles);

% --- Executes on button press in gantryTiltHelp.

function gantryTiltHelp_Callback(hObject, eventdata, handles)
figure
imshow('gantryTilt.png');
guidata(hObject,handles);

Protocol Review Panel
% --- Executes on selection change in protocolNum.
function protocolNum_Callback(hObject, eventdata, handles)

 61

contents = cellstr(get(hObject,'String'));
numProtocols = contents{get(hObject,'Value')};

% selection determines which fields are visible
switch numProtocols
 case '1'
 set(handles.protocolText, 'Visible' ,'On');
 set(handles.protocolStatusText, 'Visible' ,'On');
 set(handles.protocolCommentsText, 'Visible' ,'On');
 set(handles.protocolName1, 'Visible' ,'On');
 set(handles.protocolStatusMenu1, 'Visible' ,'On');
 set(handles.protocolComments1, 'Visible' ,'On');

 set(handles.protocolName2, 'Visible' ,'Off');
 set(handles.protocolStatusMenu2, 'Visible' ,'Off');
 set(handles.protocolComments2, 'Visible' ,'Off');
 set(handles.protocolName3, 'Visible' ,'Off');
 set(handles.protocolStatusMenu3, 'Visible' ,'Off');
 set(handles.protocolComments3, 'Visible' ,'Off');
 set(handles.protocolName4, 'Visible' ,'Off');
 set(handles.protocolStatusMenu4, 'Visible' ,'Off');
 set(handles.protocolComments4, 'Visible' ,'Off');
 set(handles.protocolName5, 'Visible' ,'Off');
 set(handles.protocolStatusMenu5, 'Visible' ,'Off');
 set(handles.protocolComments5, 'Visible' ,'Off');
 set(handles.protocolName6, 'Visible' ,'Off');
 set(handles.protocolStatusMenu6, 'Visible' ,'Off');
 set(handles.protocolComments6, 'Visible' ,'Off');
 case '2'
 set(handles.protocolText, 'Visible' ,'On');
 set(handles.protocolStatusText, 'Visible' ,'On');
 set(handles.protocolCommentsText, 'Visible' ,'On');
 set(handles.protocolName1, 'Visible' ,'On');
 set(handles.protocolStatusMenu1, 'Visible' ,'On');
 set(handles.protocolComments1, 'Visible' ,'On');
 set(handles.protocolName2, 'Visible' ,'On');
 set(handles.protocolStatusMenu2, 'Visible' ,'On');
 set(handles.protocolComments2, 'Visible' ,'On');

 set(handles.protocolName3, 'Visible' ,'Off');
 set(handles.protocolStatusMenu3, 'Visible' ,'Off');
 set(handles.protocolComments3, 'Visible' ,'Off');
 set(handles.protocolName4, 'Visible' ,'Off');
 set(handles.protocolStatusMenu4, 'Visible' ,'Off');
 set(handles.protocolComments4, 'Visible' ,'Off');
 set(handles.protocolName5, 'Visible' ,'Off');
 set(handles.protocolStatusMenu5, 'Visible' ,'Off');
 set(handles.protocolComments5, 'Visible' ,'Off');
 set(handles.protocolName6, 'Visible' ,'Off');
 set(handles.protocolStatusMenu6, 'Visible' ,'Off');
 set(handles.protocolComments6, 'Visible' ,'Off');
 case '3'
 set(handles.protocolText, 'Visible' ,'On');
 set(handles.protocolStatusText, 'Visible' ,'On');
 set(handles.protocolCommentsText, 'Visible' ,'On');
 set(handles.protocolName1, 'Visible' ,'On');
 set(handles.protocolStatusMenu1, 'Visible' ,'On');
 set(handles.protocolComments1, 'Visible' ,'On');
 set(handles.protocolName2, 'Visible' ,'On');
 set(handles.protocolStatusMenu2, 'Visible' ,'On');
 set(handles.protocolComments2, 'Visible' ,'On');
 set(handles.protocolName3, 'Visible' ,'On');

 62

 set(handles.protocolStatusMenu3, 'Visible' ,'On');
 set(handles.protocolComments3, 'Visible' ,'On');

 set(handles.protocolName4, 'Visible' ,'Off');
 set(handles.protocolStatusMenu4, 'Visible' ,'Off');
 set(handles.protocolComments4, 'Visible' ,'Off');
 set(handles.protocolName5, 'Visible' ,'Off');
 set(handles.protocolStatusMenu5, 'Visible' ,'Off');
 set(handles.protocolComments5, 'Visible' ,'Off');
 set(handles.protocolName6, 'Visible' ,'Off');
 set(handles.protocolStatusMenu6, 'Visible' ,'Off');
 set(handles.protocolComments6, 'Visible' ,'Off');
 case '4'
 set(handles.protocolText, 'Visible' ,'On');
 set(handles.protocolStatusText, 'Visible' ,'On');
 set(handles.protocolCommentsText, 'Visible' ,'On');
 set(handles.protocolName1, 'Visible' ,'On');
 set(handles.protocolStatusMenu1, 'Visible' ,'On');
 set(handles.protocolComments1, 'Visible' ,'On');
 set(handles.protocolName2, 'Visible' ,'On');
 set(handles.protocolStatusMenu2, 'Visible' ,'On');
 set(handles.protocolComments2, 'Visible' ,'On');
 set(handles.protocolName3, 'Visible' ,'On');
 set(handles.protocolStatusMenu3, 'Visible' ,'On');
 set(handles.protocolComments3, 'Visible' ,'On');
 set(handles.protocolName4, 'Visible' ,'On');
 set(handles.protocolStatusMenu4, 'Visible' ,'On');
 set(handles.protocolComments4, 'Visible' ,'On');

 set(handles.protocolName5, 'Visible' ,'Off');
 set(handles.protocolStatusMenu5, 'Visible' ,'Off');
 set(handles.protocolComments5, 'Visible' ,'Off');
 set(handles.protocolName6, 'Visible' ,'Off');
 set(handles.protocolStatusMenu6, 'Visible' ,'Off');
 set(handles.protocolComments6, 'Visible' ,'Off');
 case '5'
 set(handles.protocolText, 'Visible' ,'On');
 set(handles.protocolStatusText, 'Visible' ,'On');
 set(handles.protocolCommentsText, 'Visible' ,'On');
 set(handles.protocolName1, 'Visible' ,'On');
 set(handles.protocolStatusMenu1, 'Visible' ,'On');
 set(handles.protocolComments1, 'Visible' ,'On');
 set(handles.protocolName2, 'Visible' ,'On');
 set(handles.protocolStatusMenu2, 'Visible' ,'On');
 set(handles.protocolComments2, 'Visible' ,'On');
 set(handles.protocolName3, 'Visible' ,'On');
 set(handles.protocolStatusMenu3, 'Visible' ,'On');
 set(handles.protocolComments3, 'Visible' ,'On');
 set(handles.protocolName4, 'Visible' ,'On');
 set(handles.protocolStatusMenu4, 'Visible' ,'On');
 set(handles.protocolComments4, 'Visible' ,'On');
 set(handles.protocolName5, 'Visible' ,'On');
 set(handles.protocolStatusMenu5, 'Visible' ,'On');
 set(handles.protocolComments5, 'Visible' ,'On');

 set(handles.protocolName6, 'Visible' ,'Off');
 set(handles.protocolStatusMenu6, 'Visible' ,'Off');
 set(handles.protocolComments6, 'Visible' ,'Off');
 case '6'
 set(handles.protocolText, 'Visible' ,'On');
 set(handles.protocolStatusText, 'Visible' ,'On');
 set(handles.protocolCommentsText, 'Visible' ,'On');

 63

 set(handles.protocolName1, 'Visible' ,'On');
 set(handles.protocolStatusMenu1, 'Visible' ,'On');
 set(handles.protocolComments1, 'Visible' ,'On');
 set(handles.protocolName2, 'Visible' ,'On');
 set(handles.protocolStatusMenu2, 'Visible' ,'On');
 set(handles.protocolComments2, 'Visible' ,'On');
 set(handles.protocolName3, 'Visible' ,'On');
 set(handles.protocolStatusMenu3, 'Visible' ,'On');
 set(handles.protocolComments3, 'Visible' ,'On');
 set(handles.protocolName4, 'Visible' ,'On');
 set(handles.protocolStatusMenu4, 'Visible' ,'On');
 set(handles.protocolComments4, 'Visible' ,'On');
 set(handles.protocolName5, 'Visible' ,'On');
 set(handles.protocolStatusMenu5, 'Visible' ,'On');
 set(handles.protocolComments5, 'Visible' ,'On');
 set(handles.protocolName6, 'Visible' ,'On');
 set(handles.protocolStatusMenu6, 'Visible' ,'On');
 set(handles.protocolComments6, 'Visible' ,'On');
 otherwise
 set(handles.protocolText, 'Visible' ,'Off');
 set(handles.protocolStatusText, 'Visible' ,'Off');
 set(handles.protocolCommentsText, 'Visible' ,'Off');
 set(handles.protocolName1, 'Visible' ,'Off');
 set(handles.protocolStatusMenu1, 'Visible' ,'Off');
 set(handles.protocolComments1, 'Visible' ,'Off');
 set(handles.protocolName2, 'Visible' ,'Off');
 set(handles.protocolStatusMenu2, 'Visible' ,'Off');
 set(handles.protocolComments2, 'Visible' ,'Off');
 set(handles.protocolName3, 'Visible' ,'Off');
 set(handles.protocolStatusMenu3, 'Visible' ,'Off');
 set(handles.protocolComments3, 'Visible' ,'Off');
 set(handles.protocolName4, 'Visible' ,'Off');
 set(handles.protocolStatusMenu4, 'Visible' ,'Off');
 set(handles.protocolComments4, 'Visible' ,'Off');
 set(handles.protocolName5, 'Visible' ,'Off');
 set(handles.protocolStatusMenu5, 'Visible' ,'Off');
 set(handles.protocolComments5, 'Visible' ,'Off');
 set(handles.protocolName6, 'Visible' ,'Off');
 set(handles.protocolStatusMenu6, 'Visible' ,'Off');
 set(handles.protocolComments6, 'Visible' ,'Off');
end
guidata(hObject,handles);

Basic Information
BI.testingDate = get(handles.BI_testingDate,'string');
BI.reportDate = get(handles.BI_reportDate,'string');
BI.scannerLocation = get(handles.BI_scannerLocation,'string');
BI.facilityName = get(handles.BI_facilityName,'string');
BI.facilityAddress = get(handles.BI_facilityAddress,'string');
BI.facilityContactName = get(handles.BI_facilityContactName,'string');
BI.facilityContactEmail = get(handles.BI_facilityContactEmail,'string');
BI.facilityContactPhone = get(handles.BI_facilityContactPhone,'string');
BI.physicistName = get(handles.BI_physicistName,'string');
BI.physicistAddress = get(handles.BI_physicistAddress,'string');
BI.physicistPhone = get(handles.BI_physicistPhone,'string');
BI.physicistEmail = get(handles.BI_physicistEmail,'string');
BI.comments = get(handles.BI_comments,'string');

 64

Safety
Question 1

val = get(handles.safeQ1,'value');
switch(val)
 case 1
 safety.Q1 = 'N/A';
 case 2
 safety.Q1 = 'Yes';
 case 3
 safety.Q1 = 'No';
end
% Question 2
val = get(handles.safeQ2,'value');
switch(val)
 case 1
 safety.Q2 = 'N/A';
 case 2
 safety.Q2 = 'Yes';
 case 3
 safety.Q2 = 'No';
end
% Question 3
val = get(handles.safeQ3,'value');
switch(val)
 case 1
 safety.Q3 = 'N/A';
 case 2
 safety.Q3 = 'Yes';
 case 3
 safety.Q3 = 'No';
end
% Question 4
val = get(handles.safeQ4,'value');
switch(val)
 case 1
 safety.Q4 = 'N/A';
 case 2
 safety.Q4 = 'Yes';
 case 3
 safety.Q4 = 'No';
end
% Question 5
val = get(handles.safeQ5,'value');
switch(val)
 case 1
 safety.Q5 = 'N/A';
 case 2
 safety.Q5 = 'Yes';
 case 3
 safety.Q5 = 'No';
end
% Question 6
val = get(handles.safeQ6,'value');
switch(val)
 case 1
 safety.Q6 = 'N/A';
 case 2
 safety.Q6 = 'Yes';
 case 3
 safety.Q6 = 'No';
end

 65

% Question 7
val = get(handles.safeQ1,'value');
switch(val)
 case 1
 safety.Q7 = 'N/A';
 case 2
 safety.Q7 = 'Yes';
 case 3
 safety.Q7 = 'No';
end
% Question 8
val = get(handles.safeQ8,'value');
switch(val)
 case 1
 safety.Q8 = 'N/A';
 case 2
 safety.Q8 = 'Yes';
 case 3
 safety.Q8 = 'No';
end
% Question 9
val = get(handles.safeQ9,'value');
switch(val)
 case 1
 safety.Q9 = 'N/A';
 case 2
 safety.Q9 = 'Yes';
 case 3
 safety.Q9 = 'No';
end
% Question 10
val = get(handles.safeQ10,'value');
switch(val)
 case 1
 safety.Q10 = 'N/A';
 case 2
 safety.Q10 = 'Yes';
 case 3
 safety.Q10 = 'No';
end

Artifacts
artifacts.Pitch = get(handles.artifactsPitch,'string');
artifacts.ScanMode= get(handles.artifactsScanMode,'string');
artifacts.MA = get(handles.artifactsMA,'string');
artifacts.RotationTime= get(handles.artifactsRotationTime,'string');
artifacts.Effective= get(handles.artifactsEffective,'string');
artifacts.Denoising= get(handles.artifactsDenoising,'string');
artifacts.Kernel= get(handles.artifactsKernel,'string');
artifacts.SFOV= get(handles.artifactsSFOV,'string');
artifacts.RFOV= get(handles.artifactsRFOV,'string');
artifacts.Slice= get(handles.artifactsSlice,'string');
val = get(handles.artifactsYN,'value');
switch(val)
 case 1
 artifacts.ArtifactsPresent = '';
 case 2
 artifacts.ArtifactsPresent = 'Yes';
 case 3
 artifacts.ArtifactsPresent = 'No';

 66

end
artifacts.Comments= get(handles.artifactsComments,'string');
%artifacts.Stdev= get(handles.artifactsStdev,'string');

LCD
Not sure what he wants from LCD other than the images

Noise
Noise.Pitch = get(handles.NoisePitch,'string');
Noise.ScanMode= get(handles.artifactsScanMode,'string');
Noise.MA = get(handles.artifactsMA,'string');
Noise.RotationTime= get(handles.NoiseRotTime,'string');
Noise.Effective= get(handles.NoiseEffective,'string');
Noise.Denoising= get(handles.NoiseDenoising,'string');
Noise.Kernel= get(handles.NoiseKernel,'string');
Noise.SFOV= get(handles.NoiseSFOV,'string');
Noise.RFOV= get(handles.NoiseRFOV,'string');
Noise.Slice= get(handles.NoiseSlice,'string');
Noise.Comments= get(handles.NoiseComments,'string');
%Noise.StandDeviation = get(handles.Noise_standDeviation,'string');

CT Number
CTNum.Pitch = get(handles.CTNumPitch,'string');
CTNum.ScanMode= get(handles.CTNumScanMode,'string');
CTNum.MA = get(handles.CTNumMA,'string');
CTNum.RotationTime= get(handles.CTNumRotTime,'string');
CTNum.Effective= get(handles.CTNumEffective,'string');
CTNum.Denoising= get(handles.CTNumDenoising,'string');
CTNum.Kernel= get(handles.CTNumKernel,'string');
CTNum.SFOV= get(handles.CTNumSFOV,'string');
CTNum.RFOV= get(handles.CTNumRFOV,'string');
CTNum.Slice= get(handles.CTNumSlice,'string');
CTNum.Comments= get(handles.CTNumComments,'string');
%CTNum.MeanCTNum = get(handles.CTNum_mean,'string');

CT Uniformity
CTUniformity.Pitch = get(handles.CTUniformityPitch,'string');
CTUniformity.ScanMode= get(handles.CTUniformityScanMode,'string');
CTUniformity.MA = get(handles.CTUniformityMA,'string');
CTUniformity.RotationTime= get(handles.CTUniformityRotTime,'string');
CTUniformity.Effective= get(handles.CTUniformityEffective,'string');
CTUniformity.Denoising= get(handles.CTUniformityDenoising,'string');
CTUniformity.Kernel= get(handles.CTUniformityKernel,'string');
CTUniformity.SFOV= get(handles.CTUniformitySFOV,'string');
CTUniformity.RFOV= get(handles.CTUniformityRFOV,'string');
CTUniformity.Slice= get(handles.CTUniformitySlice,'string');
CTUniformity.Comments= get(handles.CTUniformityComments,'string');
%CTUniformity.StandDeviation = get(handles.CTUniformity_standDeviation,'string');

Slice Width

 67

%handles.sliceWidth_width;
h = msgbox('Your text file has been exported.');

title = 'Example Title';
fid=fopen('CTReport.txt','w');
fprintf(fid, '\\');
fprintf(fid,
'documentclass[]{spie}\n\\usepackage{graphicx}\n\\usepackage{float}\n\\usepackage{caption}\n\\usepackage{enumite
m}\n');
fprintf(fid, '\\');
fprintf(fid,
'DeclareGraphicsExtensions{.pdf,.png,.jpg,.eps}\n\\usepackage{subfigure}\n\\usepackage{lipsum}\n\\usepackage{am
smath}\n\\usepackage{cite}\n\\usepackage{color}\n\\usepackage{wrapfig}\n\\usepackage{amsmath}\n\\usepackage{b
ooktabs}\n\\newcommand{\\ben}{\\begin{eqnarray}');
fprintf(fid, '\\');
fprintf(fid, 'displaystyle}\n\\newcommand{');
fprintf(fid, '\\');
fprintf(fid, 'een}{');
fprintf(fid, '\\');
fprintf(fid, 'end{eqnarray}}\n\\newcommand{');
fprintf(fid, '\\');
fprintf(fid, 'et}{');
fprintf(fid, '\\');
fprintf(fid, 'emph{et al }}\n\\newcommand{\\refb}[1]{(\\ref{#1})}\n\\newcommand{\\ignore}[1]{}\n\n');

fprintf(fid, '\\title{*TITLE VARIABLE HERE*}\n\n\n\n');

fprintf(fid, '\\author{');
fprintf(fid, BI.physicistName);
fprintf(fid, '\n\\skiplinehalf\nReport Date: ');
fprintf(fid, BI.reportDate);
fprintf(fid, '\n\\skiplinehalf\nTesting Date: ');
fprintf(fid, BI.testingDate);
fprintf(fid, '\n\\skiplinehalf\n');
fprintf(fid, BI.facilityName);
fprintf(fid, '\n');
fprintf(fid, BI.scannerLocation);
fprintf(fid, '\\\\\n');
fprintf(fid, BI.facilityAddress);
fprintf(fid, ';\\\\\n');
fprintf(fid, BI.facilityContactName);
fprintf(fid, '\\\\\n');
fprintf(fid, BI.facilityContactEmail);
fprintf(fid, '\\\\\n');
fprintf(fid, BI.facilityContactPhone);
fprintf(fid, '\n}\n\n');

%Background of scanner and report section
fprintf(fid, '\\begin{document}\n\n\\maketitle\n\n\\section*{Background of this scanner and Report}\n\n');
fprintf(fid, '*BI_COMMENTS VARIABLE*\n\n');

%Overview and recommendations section
fprintf(fid, '\\section{Overview and recommendations}\n\n');
fprintf(fid, 'Table \\ref{tbl:overview} lists all tests performed and the outcome.\n\n');

fprintf(fid, '\\begin{table}[htb]\begin{footnotesize}\n');
fprintf(fid, '\\begin{center}\n\\caption{Overview of tests performed}\n\\label{tbl:overview}\n\\');
fprintf(fid, 'resizebox{0.5\\');
fprintf(fid, 'textwidth}{!}{\n\\');
fprintf(fid, 'begin{tabular}{l l}\n\\toprule\nTest & Result\\\\\n\\midrule\n');

fprintf(fid, 'Room Safety Features & ');

 68

fprintf(fid, '*ROOMSAFETY P/F variable*\\\\\n');

fprintf(fid, 'Scanner Safety Features & ');
fprintf(fid, '*SCANNER_SAFETY P/F variable*\\\\\n');

fprintf(fid, 'Artifact Check & ');
fprintf(fid, '*ARTIFACT_CHECK P/F variable*\\\\\n');

fprintf(fid, 'Low contrast detection & ');
fprintf(fid, '*LOW_CONTRAST_DETECT P/F variable*\\\\\n');

fprintf(fid, 'Spatial Resolution & ');
fprintf(fid, '*SPATIAL_RESOLUTION P/F variable*\\\\\n');

fprintf(fid, 'Noise & ');
fprintf(fid, '*NOISE P/F variable*\\\\\n');

fprintf(fid, 'CT Number Check & ');
fprintf(fid, '*CT# P/F variable*\\\\\n');

fprintf(fid, 'Dose (Scanner Output) & ');
fprintf(fid, '*DOSE P/F variable*\\\\\n');

fprintf(fid, 'Actual Beam Width & ');
fprintf(fid, '*BEAMWIDTH P/F variable*\\\\\n');

fprintf(fid, 'Slice Thickness & ');
fprintf(fid, '*SLICE_THICKNESS P/F variable*\\\\\n');

fprintf(fid, 'Lasers & ');
fprintf(fid, '*LASERS P/F variable*\\\\\n');

fprintf(fid, 'Table Movement & ');
fprintf(fid, '*TABLE_MOVEMENT P/F variable*\\\\\n');

fprintf(fid, 'Lasers to Scout to Image Consistency & ');
fprintf(fid, '*LASER_SCOUT_IMAGE P/F variable*\\\\\n');

fprintf(fid, 'Monitor Luminance/Uniformity & ');
fprintf(fid, '*Monitor Lumin/Unif P/F variable*\\\\\n');

fprintf(fid, 'Geometric Distortion & ');
fprintf(fid, '*GeometricDistortion P/F variable*\\\\\n');

fprintf(fid, 'Spatial Accuracy & ');
fprintf(fid, '*SPATIAL+ACCURACY P/F variable*\\\\\n');

fprintf(fid, 'Gantry Tilt & ');
fprintf(fid, '*GANTRY_TILT P/F variable*\\\\\n');

fprintf(fid, 'Protocol Review & ');
fprintf(fid, '*Protocol_REVIEW P/F variable*\\\\\n');

fprintf(fid, 'Review QA Logs & ');
fprintf(fid, '*Review_QA_LOGS P/F variable*\\\\\n');

fprintf(fid, '\\bottomrule\n\\');
fprintf(fid, 'end{tabular}}\n\\');
fprintf(fid, 'end{center}\n\\');
fprintf(fid, 'end{footnotesize}\n\\');
fprintf(fid, 'end{table}\n\n');

 69

%Artifacts section

%Code to see if they filled out the artifacts test needed here
fprintf(fid, '\\section{Artifacts}\n');
%Code to print either pass or fail depending on if it passed or failed

%if passed
fprintf(fid, '\\');
fprintf(fid, 'textcolor{green}{PASS}\n\n');

%if failed
fprintf(fid, '\\');
fprintf(fid, 'textcolor{red}{FAIL}\n\n');

%Artifact comments
fprintf(fid, 'INSERT ARTIFACT COMMENT VARIABLE HERE*\n\n');

%INSERT ARTIFACT TABLE CODE HERE IF APPROPRIATE

%Noise and CT Number Uniformity Section
%Code here to only post this if these tests were done
fprintf(fid, '\\section{Noise and CT Number Uniformity}\n\\');

%if passed
fprintf(fid, '\\');
fprintf(fid, 'textcolor{green}{PASS}\n\n');

%if failed
fprintf(fid, '\\');
fprintf(fid, 'textcolor{red}{FAIL}\n\n');

%NOISE/CT Number Uniformity comments
fprintf(fid, 'INSERT NOISE/CT# Uniformity COMMENT VARIABLE HERE*\n\n');

fprintf(fid, '\\');
fprintf(fid, 'end{document}');
fclose(fid);

Published with MATLAB® R2016a

http://www.mathworks.com/products/matlab/

	Introduction
	Motivation
	Competing Designs
	Problem Statement

	Client Information
	Background
	Computed Tomography
	CT Quality Assurance Tests
	Design Specifications

	Preliminary Designs
	Design 1: Multi-GUI
	Design 2: Text Document
	Design 3: Master GUI

	Preliminary Design Evaluation
	Design Criteria
	Ease of Use
	Degree of User Interaction
	Modularity
	Speed
	Safety
	Cost

	Proposed Final Design

	Fabrication & Development
	Materials
	Methods

	Final Prototype
	Basic Information
	Safety
	Artifacts
	Noise
	LCD
	CT Number
	CT Uniformity
	Monitor
	Beam Width
	Protocol Review
	Gantry Tilt
	Slice Width
	Dose
	LaTeX

	Testing
	Results
	Algorithm Design
	ROI Evaluation
	Pixel to Distance Calibration
	Image Angle Calculation
	ROI Center to Isocenter Distance Calculation

	Discussion
	Challenges
	Relevance
	Ethics
	Future Work

	Conclusion
	References
	Glossary
	Appendices
	A. Product Design Specification
	B. Materials
	C. Semester Schedule
	D. Project Schedule & Responsibilities
	E. Panel Layouts
	F. Source Code

