Microfluidic Point of Care Diagnostic Device for Malaria

Design Team: Hunter Johnson, Austin Feeney, James Jorgensen, Zach Hite, Josh Liberko

Overview of Presentation

- 1. Background Material
 - a. Types of Malaria Parasites
 - b. Medical Implications
- 2. Existing Detection Methods
 - a. Smear/Stain
 - b. POC Devices
- 3. Product Design Specifications
- 4. Preliminary Designs
 - a. Separation Methods
 - b. Detection Methods
 - c. Design Matrix
- 5. Future Work

Client and Advisor

Client: Dr. Timothy Kwa, Jimma University. Jimma, Ethiopia

Advisor: Dr. John Puccinelli, University of Wisconsin - Madison, BME Department

Problem Statement

Create a microfluidic point of care (POC) testing device for diagnosing malaria in rural Ethiopia in a sensitive, cheap, and time efficient manner

Malaria Prevalence and Pathobiology

http://magazine.scientificmalaysian.com/wp-content/uploads/2016/06/life-cycle-of-malaria-plasmodium.jpg

Transmitted by Anopheles mosquitoes

Within 5 days of infection ring stage Plasmodium can be detected

214 million cases worldwide in 2015

Economic burden of \$12 billion on Africa every year

A 90% effective test would save 2.2 million lives per year

iRBCs special characteristics: cell deformation, magnetism, electricity [1]

Current Diagnostic Methods

The gold standard in diagnosis is a blood smear test

- Blood stained with Romanowsky Stain highlights parasites
- No distinction between P. falciparum, P. vivax, or others
- Needs equipment and trained technicians

Rapid diagnostic tests

- \$1 per test
- In a study it was found only 50% of RDT's are more than 80% accurate [2]

http://spot.pcc.edu/~jvolpe/b/bi234/lec/2_par asites/images/vivax/vivax-fig1.jpg

Capabilities/Restrictions in Ethiopia

- Limited equipment/resources
- Unreliable power and internet
- Untrained laboratory personnel
- Rural locations
- Little to no laboratory infrastructure

Product Design Specifications

Accuracy > 95%

Results in < 1 hr

Battery powered (electricity unreliable)

Small in size

Price range: \$1 - 5

Able to diagnose malaria (possibly other diseases too)

Distinguish between 4 strain

Separation 1: Cell Deformation

• Pros:

- No additional requirements
- Easily testable with polystyreen beads
- Cons:
 - Less effective in separating early stage iRBCs
 - Requires 40% blood hematocrit

Concentrated iRBCs for easy detection

Separation 3: Electrical

[•] Pros:

- High specificity
 iRBCs very sensitive to + charges (Conductivity)
- Cons: o Electrical
 - difficulties for POC
 - High cost due to batteries

Detection 1: BinaxNOW

- Pros
 - 15 minutes
 - Small blood volume
 - Easy to interpret
 - Sensitivity > 93.5% for all 4 strands
- Cons
 - Needs parasite levels > 5,000 parasites/uL
 - Very expensive, around \$40 each for a pack of 12

Detection 2: Polystyrene Beads

Detection 3: Gold Nanoparticles

Pros:

- Demonstrated
 Method
- Low detection time
- High accuracy
- Species Specific

Cons:

- Expensive without mass production
- Possible fabrication difficulties

Design				Separation				Detection					
				- see				BrookOW Malaria				*	
Criteria (weight)	(Cell Deformation	Μ	agnetic Separation	E	lectric Separation	Bi	inaxNOW	I	PS Beads		GNPs	
Sensitivity (25)	3	15	5	25	4	. 20	5	25	4	20	5	25	
Equipment Free/Usable in Field/Intuitive (20)	5	20	4	16	3	12	3	12	4	. 16	5	20	
Userfriendly (20)	5	20	5	20	3	12	4	16	4	. 16	5	20	
Time (10)	2	4	4	8	4	. 8	4	8	5	10	4	8	
Cost (10)	5	10	4	8	3	6	1	2	5	10	3	6	
Ease of Fabrication (10)	4	8	4	8	3	6	5	10	3	6	2	4	
Versatility (type of Malaria or other diseases) (5)	4	4	2	2	2	2	3	3	1	1	5	5	
Total		81		87		66		76		79		88	

Future Work

- Combine both the separation and detection methods
- Determine optimal fabrication techniques
- Develop prototype
- Testing methods
- Challenges
 - Placement of magnet(s) calculations
 - Biological testing difficulties
 - Costs on individual scale

Questions?

References

[1] WHO, "Malaria," in *World Health Organization*, World Health Organization, 2016. [Online]. Available: http://www.who.int/malaria/en/. Accessed: Oct. 11, 2016.

[2] D. Polpanich et al. "Detection of malaria infection via latex agglutination assay," *Analytical chemistry.*, vol. 79, no. 12, pp. 4690–5, May 2007. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/17511424. Accessed: Oct. 11, 2016.

[3] H. Hou *et al.*, "Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation," *Lab on a chip.*, vol. 10, no. 19, pp. 2605–13, Aug. 2010. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/20689864. Accessed: Oct. 11, 2016.

[4] A. Trafton and M. N. Office, "A new way to diagnose malaria," MIT News, 2014. [Online]. Available: http://news.mit.edu/2014/new-methoddiagnose-malaria-0831. Accessed: Oct. 11, 2016.

[5] W. K. Peng, L. Chen, and J. Han, "Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis," *Review of Scientific Instruments*, vol. 83, no. 9, p. 95115, Sep. 2012. [Online]. Available: http://scitation.aip.org/content/aip/journal/rsi/83/9/10.1063/1.4754296. Accessed: Oct. 14, 2016.

[6] A. Tay, A. Pavesi, S. R. Yazdi, C. T. Lim, and M. E. Warkiani, "Advances in microfluidics in combating infectious diseases," *Biotechnology Advances*, vol. 34, no. 4, pp. 404–421, Jul. 2016.