

BME 300: Secondary Airline Mobility Device

Secondary Airline Mobility Device

Client- Dan Dorszynski

Advisor- Dr. Aaron Suminski

Team -

Will Fox - Team Leader

Kendall Kupfer - Communicator

Justin DeShaw - BSAC

Grant Karlsson Ellifson - BPAG

Ben Ayd - BWIG

Overview

- Problem Statement
- Background
- Project Design Specifications
- Design Options
- Design Matrix
- Final Design
- ► Future Work
- References and Acknowledgments

Problem Statement

- Airline travel for disabled passengers extremely difficult
 - Approximately 55 percent of air travelers with disabilities experience problems at airports (Bureau of Transportation Statistics)
- Work to build device to simplify overall process and create healthier flying environment for disabled individuals

Background

Common aisle wheelchair

Airline Travel with Wheelchair

- Transfer from passenger's wheelchair to aisle wheelchair
- Transfer from aisle wheelchair to seat
- This is done in reverse when plane lands

Associated Risks

- Damage to passenger's wheelchair in cargo
- Risk of being dropped during any transfer

Product Design Specifications

Design Requirements:

- Minimize number of transfers during boarding process (four currently)
- Foldability/Stowability for when device is not in use
- Proper safety belts/harnesses
- Align current FAA and U.S Access Board Guidelines for Aircraft Boarding Chairs

Design One - Compact Scissor Lift

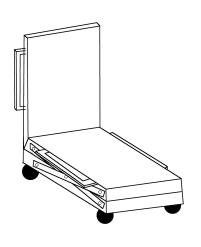


Figure 1: Angled view of collapsed chair

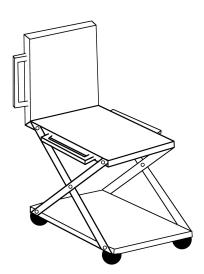


Figure 2: Angled view of extended chair

- Height adjustable
 - Accommodates for both onboarding and offboarding
- Scissor lift design lends to strong structural support

Design Two - Two-piece Scissor Lift

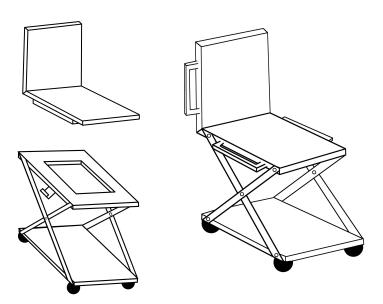


Figure 1: Two pieces separate

Figure 2: Two pieces together

- Two pieces
 - Chair portion
 - Wheels and support portion
- Chair portion is placed on wheelchair
- At gate, chair portion is lifted and placed on wheel and support portion
 - Secured together

Design Three - Rigid Chair with Collapsable Back Wheels

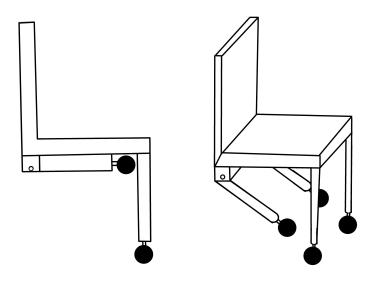
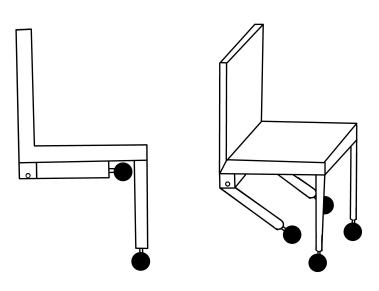


Figure 1: Side view

Figure 2: Angled view

- Slides over current wheelchair
- Spring loaded back legs
- Completely eliminates two transfers

Design Four - Eagle Lift Variation



- Medical-grade hoist
- Designs would be large and arch
 over entire current chair

Design Matrix

	Design 1 (Scissor Lift One Piece)		Design 2 (Scissor Lift Two Piece)		Design 3 (Folding Rear Wheels)	
Strength (25)	20	4/5	20	4/5	10	2/5
Size (10)	6	3/5	8	4/5	4	2/5
Cost (15)	9	3/5	9	3/5	12	4/5
Stowability (5)	4	4/5	5	5/5	2	2/5
Comfort (10)	4	2/5	6	3/5	8	4/5
Ease of Use (15)	9	3/5	9	3/5	15	5/5
Manufactu rability (20)	18	2/5	18	2/5	16	4/5
Total (100)	64		65		67	

Final Design

Benefits

- Minimal risk of dropping or injury
- Most simple in terms of fabrication and use
- Easy to explain process

Concerns

- Weight bearing properties
- Stowability

Future Work

- Choose and purchase materials
- Prototype fabrication planning and fabrication
- Prototype testing
- Challenges
 - Ensuring device has proper structural strength
 - Fabrication

References and Acknowledgements

We would like to thank the following individuals their assistance thus far:

Dr. Aaron Suminski

Dan Dorszynski

Questions?