Somatosensory Stimulation Apparatus for Rodent Cages

Leader/BPAG: Tim Lieb Communicator/BWIG: Emmy Russell BSAC: Luke DeZellar

Client: Dr. Aaron Dingle, Department of Surgery

Advisor: Prof. Mitch Tyler, Department of Biomedical Engineering

Overview:

- Project Relevance
- Problem Statement
- Physiological Background
- Product Design Specifications
- Stimulation Modalities Considered
- Vibration Source Designs/ Design Matrix
- Cage-Motor Interface Designs/ Design Matrix
- Final Design
- Future Work
- References & Acknowledgments

Project Relevance

- 185,000 amputee surgeries per year in US [1]
 - 42.2-78.8% of amputees suffer from phantom limb pain [2]
- Dr. Dingle designing an electronic interface for peripheral nerves
 - Electrode allows prosthetics to restore sense of touch and relieve pain
 - Currently in need of method for testing device in rat models
- Current plan for rat testing:
 - Train healthy rat to respond to somatosensory stimulus on hindlimbs
 - Amputate hindlimb and implant device
 - Stimulate hindlimbs with electrode and observe if rat responds the same way

Problem Statement

- Design device to provide somatosensory stimulus to rat hindlimbs
 - Provide graded stimulus to each hindlimb individually
 - Include microcontroller to control stimulation
- Device must include cage to train rat
 - Cage must not limit rat's ability to respond to stimulus

Physiological Background

- Somatosensory system: System of neurons connecting peripherals to brain
- Merkel cells
 - Mechanoreceptors in skin
 - Sense low frequency vibrations 5-15Hz [3]
- Tactile corpuscles
 - Mechanoreceptors in skin
 - Sense 10-50Hz frequencies [3]

- Merkel cells - Tactile disc

uments/.../ START HERE ch09 lecture.ppt

Product Design Specifications

- Provide stimulation to the rat's hindlimbs. Stimulation must
 - Be isolated to the individual limbs
 - Not interfere with the electrode therapy
 - Allow for varying frequencies
- The cage can not limit the rat's mobility and ability to respond to the stimulation
- Cage dimensions: 10 in x 11 in x 12 in
 - Must weigh under 5 lbs to allow for easy storage and use
 - Clear polycarbonate walls

Stimulation Modalities Considered

- Electrical Stimulation
 - Too similar to Dr. Dingle's electrodes
- Temperature Stimulation
 - Not instantaneous
 - Potential to harm rat
- Pressure Stimulation
 - Not instantaneous
 - Movement restriction

- Vibration Cuffs
 - Movement restriction

Vibration Source Designs

https://www.sparkfun.com/products/9151 http://www.voodooguitar.net/2016/11/everything-y ou-ever-wanted-to-know_14.html.

Solenoid Motor

https://www.digikey.com/product-detail/en/sparkfun -electronics/ROB-11015/1568-1592-ND/6163694

Design Matrix: Vibration Sources

Vibration Source						
Design Criteria (weight)	Solenoid Motor		Speaker Actuator			
Force (20)	4/5	16	5/5	20		
Accuracy (15)	4/5	12	5/5	15		
Durability (10)	4/5	8	2/5	4		
Amplitude (5)	4/5	4	5/5	5		
Total 40		44				

Cage-Motor Interface Designs

Connected

Disconnected

Design Matrix: Cage - Motor Interface

Cage - Motor Interface							
Design	Connected		Disconnected				
Criteria (weight)		Connociou	Disconnected				
Stabilization (20)	5/5	20	3/5	12			
Isolation (20)	3/5	12	4/5	16			
Ease of Use (10)	5/5	10	3/5	6			
Total	42		34				

Final Design

- Speaker actuators combined with the connected interface
- System diagram show the electrical components

Future Work

- Decide on specific components to use
 - Speaker actuator, driver, microcontroller
- Determine how to control the specific frequencies
- Build the prototype
- Test that the output frequencies are correct using accelerometer
 - Goal is within +/- 0.5 Hz

References & Acknowledgements

Special thanks to Dr. Amit Nimunkar and Dr. Aaron Suminski for their guidance

[1] "Limb Prosthetics Services and Devices", *Semantic Scholar*, 2017. [Online]. Available: https://pdfs.semanticscholar.org/c3ae/f3563844e2e2835411fcbc2b0fe3091ac30b.pdf. [Accessed: 20- Sep- 2017].

[2] B. Subedi and G. Grossberg, "Phantom Limb Pain: Mechanisms and Treatment Approaches", *Pain Research and Treatment*, vol. 2011, pp. 1-8, 2011.

[3] A. Basbaum, The Senses: A Comprehensive Reference. Oxford, U.K.: Elsevier, 2008, pp. 33-38.

Questions?