

WISCONSIN-MADISON

Somatosensory Stimulation Apparatus for Rodent Cages

Stephan Blanz – *Team Leader* John Beckman – *Communicator* Royal Oakes – *BWIG/BSAC* Rick Guo – *BPAG*

Dr. Jeremy Rodgers¹ – *Advisor* Dr. Aaron Dingle², Dr. Aaron Suminski¹ – *Client*

1. UW - Madison Department of Surgery

2. UW - Madison | UW Department of Biomedical Engineering

Overview

- Problem Statement
- Background
- Design Specifications
- Preliminary Designs
- Design Matrix
- Competing Designs
- Future Work

Problem Statement

Doctors studying neural regeneration are looking for a hindlimb stimulator for rats having undergone surgical nerve repair.

The doctors are looking for a way to assess the effectiveness of various treatment options.

Image courtesy of Royal Oakes.

Background

- Neural regeneration in adult mammals in the CNS is extremely limited [1].
- Long distance axon regeneration in adult mammals is possible in the PNS [1].
- There is a lot of variability in the damage level and recovery results from case to case.

Product Design Specifications

DESIGN MUST

- Fit on a laboratory bench.
- Stimulate rodents' hindlimbs using vibration that:
 - Stimulates only one leg
 - Has controllable frequency
 - Does not injure rodents
- Computer controlled
- Hold one rodent at a time
- Waterproof and easily sanitizable

Current Design Issues

- What is the desirable frequency range of the vibration
- How to control the frequency of the vibration
- Which motors can create a desirable vibration
- How to integrate the vibrational platform with a motor in the cage
- Isolate vibrations between legs

Linear Actuator

- Produces a simple linear motion using a rod and screw
- Would utilize a delay in the code to create the vibration
- Largest in size

Cell Phone Micro Vibration Motor

- Produces a vibration
 through the spin of a head
 with unbalanced weight
- Can only work with fixed frequency, 3 motors are needed to control frequency

Micro Vibration Motor for Cell Phone. Retrieved from <u>https://www.amazon.com/</u> [4]

• Cheap

Precision Vibration Motor

- Produces circular rotation
- Known frequency output to voltage input

Images courtesy of https://www.precisionmicrodrives.com/ [5]

Design Matrix

			Linear Actuator	Mi	icro Vibration Motor	Prec	ision Vibration Motor
							- 55-
Criteria	(Weight)						•
Segregation of stimulation	25	5/5	25	4/5	20	4/5	20
Frequency range	20	3/5	12	3/5	12	5/5	20
Ease of integration	15	3/5	9	2/5	6	3/5	9
Size	15	3/5	9	4/5	12	5/5	15
Ease of acchieving desired effect	5	5/5	5	3/5	3	4/5	4
Cost	5	3/5	3	5/5	5	4/5	4
Total	85	9	63		58		72

Solidworks Model

Competing Designs

Passive Avoidance Cages

• It has a dark room and a white room.

Rat Touch Screen Chamber

Enclosure for rats with a touch screen to interact with.

Both will be used to determine desirable sizes for the cage in the hindlimb experiment.

Future Work

- Circuit and code design
- Cage design
 - Sanitizable
 - Waterproof
 - How to make the rodent stay at desirable position
- Vibrational platform design, dependent on motor
 - Size and material
 - Waterproof

Acknowledgements

• Special Thanks To:

•Aaron Dingle, PhD¹

•Aaron Suminski, PhD²

•Jeremy Rogers, PhD²

- 1. UW Madison Department of Surgery
- 2. UW Madison | UW Department of Biomedical Engineering

References

[1]E. Huebner and S.M. Strittmatter, "Axon Regeneration in the Peripheral and Central Nervous Systems," N.p., 27, Mar. 2010. Web.

- [4] Micro Vibration Motor for Cell Phone, "uxcell DC 3.7V 9000RPM 90mA 4mm x 8mm Yellow Micro Vibration Motor for Cell Phone," 2018. [Online]. Available: <u>https://www.amazon.com/uxcell-9000RPM-Yellow-Micro-Vibration/dp</u>. [Accessed: 02-Oct-2018]
- [5] Precision Microdrives, "5mm Vibration Motor 8mm Type Precision Microdrives," 2018. [Online]. Available: https://www.precisionmicrodrives.com/product/304-109-5mm-vibration-motor-8mm-type. [Accessed: 04-Oct-2018].

Questions?

WISCONSIN-MADISON