

LN2 Digital Scale Alarm Monitoring System

Team Members:

Jeffrey Tsai - *Team Leader* Jake Andreae - *BSAC* Yiqun Ma - *Communicator* William Guns - *BPAG/BWIG* <u>Client:</u> Dr. Jeffrey Jones

Advisor: Sarah Sandock

Overview

- Problem Statement
- Background
- Competing Designs
- Product Design Specifications
- Designs and Design Matrix
- Market Analysis
- Implications
- Future Work
- References and Acknowledgments

Problem Statement

- Client: Dr. Jeffrey Jones
- Design a system to monitor and record the weight of LN2 tanks
 - Integrate with current monitoring system to log data and send alerts about LN2 levels and leak rate
- Budget: \$2500

Figure 1: Small capacity LN2 storage tank used by our client Dr. Jeffrey Jones at the Generations Fertility Care clinic.

Background - LN2 Storage Tank Failure

- March 4th 2018 two separate fertility centers report malfunctioning equipment [1]
 - University Hospital Cleveland Medical Center
 - Loss of more than 4,000 human eggs/embryos
 - Trouble w/automatic refill
 - Temperature alarm system turned off
 - Pacific Coast Fertility
 - LN2 levels too low

Figure 2: Large capacity LN2 storage tanks at the University Hospitals Cleveland Medical Center.

Background - LN2 Methods of Measurement

- Thermophysical properties:
 - Temperature
 - Liquid Levels
- Forms of LN2 sensing:
 - Point level-sensing
 - Continuous level-sensing

- Competing measuring techniques:
 - Dipstick
 - Capacitance liquid gauge
 - Ultrasound sensor
 - Temperature sensor

Competing Designs - Dipstick Method

- Advantages:
 - Simple
 - Widely used
- Disadvantages
 - Imprecise
 - Labor intensive
 - \circ Loss of LN2
 - Unable to detect sudden failure
 - Not continuous

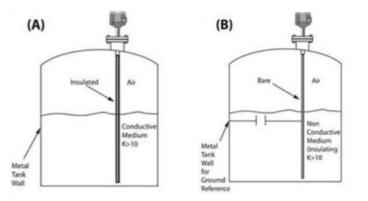


Figure 3: Simple measuring sticks are a quick and easy way to check LN2 levels.

Competing Designs - Capacitive Sensors

- Advantages:
 - High sensitivity
 - Adjustable to the geometry of application
 - Low in cost
- Disadvantages:
 - Temperature sensitivity
 - Accuracy requires complex sensor arrangement
 - Not intrinsically safe

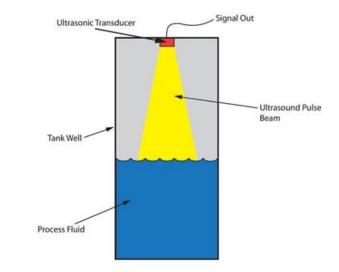


Figure 4: Capacitive level sensors measure the change in capacitance between two plates and can be used for fluids with high dielectric constants (A) or low dielectric constants (B) [3].

Competing Designs - Ultrasonic Sensors

- Advantages:
 - Easy installation and maintenance
 - High degree of accuracy
- Disadvantages:
 - Must be integrated with the lid
 - Susceptible to interference
 - Very limited options for low temperature application

Figure 5: Ultrasonic sensors possess advantages such as simple structure and easy installation/maintenance, but are susceptible to interferences [3].

Competing Designs - Temperature Sensors

- Advantages:
 - Support wide temperature range
 - High output, fast in operation
 - Correlates to viability of specimens
- Disadvantages:
 - Vertical position of the sensor
 - Unable to detect if LN2 levels are too low [4]

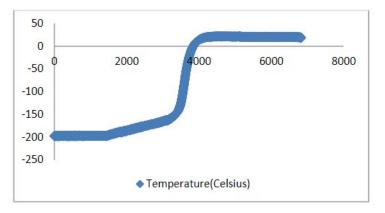


Figure 6: The temperature of a 20L dewar as LN2 evaporates.

Product Design Specifications

- Client Requirements
 - Design and manufacture a scale that integrates w/the roller base
 - Continuous weight measurement and data logging
 - Interface with current monitoring system to communicate data and send alerts

- Physical/Operational Characteristics
 - Digital display
 - Tare functionality
 - Calibration functionality

Matrix 1 - Methodology

Criterion (Weight)	Weight		Capacitance		Ultrasonic Transducer	
Market Potential (35)	5/5	35	4/5	28	3/5	21
Longevity (30)	3/5	18	4/5	24	5/5	30
Easy of installation (20)	5/5	20	2/5	10	3/5	15
Cost (15)	3/5	9	5/5	15	3/5	9
Total (100)	82		77		75	

Matrix 2 - Implementation

Criterion (Weight)	fitting existi			rm scale nnecting	Conversion of existing base into a scale	
Data Aquisition Frequency (30)	5/5	30	2/5	12	5/5	30
Longevity (25)	3/5	15	5/5	25	3/5	15
Ease of Use/Automation (15)	5/5	15	3/5	9	3/5	9
Model Compatibility (10)	1/5	2	5/5	10	1/5	2
Ease of Fabrication (10)	3/5	6	5/5	10	2/5	4
Size (5)	5/5	5	3/5	3	4/5	4
Cost (5)	3/5	3	4/5	4	2/5	2
Total (100)	76		73		66	

Matrix 3 - Preliminary Design Solution

Criterion (Weight)	<u>Option 1 - 3rd party</u> scale w/ existing <u>base</u>			on 2 - Custom lle w/ existing base	<u>Option 3 - Custom</u> <u>scale/base</u>	
Reliability of Performance (35)	5/5	35	4/5	28	4/5	28
Model Compatibility (30)	2/5	12	4/5	24	5/5	30
Ease of Fabrication (20)	4/5	16	4/5	16	3/5	12
Cost (15)	3/5	9	5/5	15	2/5	6
Total (100)	72			83	76	

Market Analysis

- Marketing approach to the product design
- We are designing for the specific problem presented by the client!
 - However, this approach will influence our design
- Customer analysis
- Understand current market and consumer need
- Survey to record responses
 - Big Takeaway: Continuous monitoring and automated alarm system

Discussion

- Weight provides a more reliable method of monitoring LN2 levels
 - Gives an indication on the health of the tank
 - Continuous data measurement and data logging
- Possible applications to other types of storage units
 - Marketing approach
- Concerns:
 - Load cells will deform over time
 - Accuracy
 - Calibration
 - Third-party collaboration

Future Work

- Heavy focus on software design
- Interface with current monitoring system
 - Record data
 - Use weight to calculate:
 - Volume/level of LN2
 - Rate of evaporation
 - Send alerts
- Collaboration with Networked Robotics
- Product development & marketing



Figure 7: Networked Robotics Interface to Adam Equipment® Scale.

Acknowledgements and References

Thank you to:

- Client Dr. Jeffrey Jones
- Advisor Sarah Sandock
- Dr. Puccinelli & the BME Department

References:

[1] Krieger, Lisa M. "Lawsuit Filed over Lost Eggs at San Francisco Fertility Clinic." *The Mercury News*, The Mercury News, 14 Mar. 2018, www.mercurynews.com/2018/03/13/lawsuit-filed-over-lost-eggs-at-san-francisco-fertility -clinic/.

[2] CT Cryogenics Inc. "How to Measure Liquid Nitrogen Levels." *LiquidNitrogenTank.com*, iquidnitrogentank.com/How_to_Measure_Liquid_Nitrogen_Level.php.

[3] H. Hopper, "A Dozen Ways to Measure Fluid Level and How They Work," Sensors Magazine, 01-Dec-2004. [Online]. Available: https://www.sensorsmag.com/components/a-dozen-ways-to-measure-fluid-level-and-how

-they-work. [Accessed: 05-Oct-2018].

[4] "Monitoring Liquid Nitrogen Storage Dewars By Weight". *Networked Robotics*. Apr. 2018.

http://www.networkedrobotics.com/documentation/Monitoring%20Liquid%20Nitrogen% 20Storage%20Dewars%20by%20Weight.pdf

