Power tool operation - Rat Model

Team Leader - Mengizem Tizale Communicator - Yash Gokhale BSAC - Janavi Kotamarthi BWIG - Carson Gehl BPEG - Naman Patel

Presentation Overview

- 1. Problem Statement
- 2. Background
- 3. Summary of Product Design Specifications
- 4. Design Alternatives
- 5. Design Matrix
- 6. Future Work
- 7. Acknowledgements

Problem Statement

- Power tools present hazardous hand load
- Leads to repetitive motion injuries
- Use rat to model this motion
- Lever will apply reaction force
- Rat must pull lever until force achieved

Background

- Vulintus Model
- Automated, Quantitative

Measures of Forelimb Function in

00

Rats

• Model is static; no reaction force

Summary PDS

- Client requirements
- Competition
- Working system dimensions
- Rat Data
- Challenges

Linear Actuator

- Linear Actuator
 - Provides an opposing force to

the rat's pull

- Pwm -> mosfet -> solenoid
- Arduino microcontroller

Motor and gear system

- Gear and Motor
 - Rotating gear provides linear
 - resistive force
 - High torque ratio
 - Arduino microcontroller

Motor	step down geon	nothedde E borr w/ Teath
-		

Rubber Band

- Rubber Bands
 - Bands provide reaction

force

• Displacement is

proportional to force

Design Matrix

Design:	Rubber Band		Motor & Gear		Linear Actuator	
Adjustability(25)	3/5	15	4/5	20	5/5	25
Consistency(25)	2/5	10	3/5	15	5/5	25
Ease of Integration(20)	3/5	12	3.5/ 5	14	2/5	8
Feasibility(25)	3.5/5	17.5	3/5	15	2/5	10
Cost(5)	5/5	5	3/5	3	3/5	3
Total 100	57		66		71	

Future Work

- Refine Design
- Fabricate chosen design
- Run tests on prototype
- Modify design based on results

References

S. A. Hays, N. Khodaparast, A. M. Sloan, D. R. Hulsey, M. Pantoja, A. D. Ruiz, M. P. Kilgard, and R. L. Rennaker, "The isometric pull task: A novel automated method for quantifying forelimb force generation in rats," *Journal of Neuroscience Methods*, vol. 212, no. 2, pp. 329–337, 2013.

J.-H. Lin, R. G. Radwin, and T. G. Richard, "Handle Dynamics Predictions for Selected Power Hand Tool Applications," *Human Factors: The Journal of the Human Factors and Ergonomics Society*, vol. 45, no. 4, pp. 645–656, 2003.

V. S. Massicotte, N. Frara, M. Y. Harris, M. Amin, C. K. Wade, S. N. Popoff, and M. F. Barbe, "Prolonged performance of a high repetition low force task induces bone adaptation in young adult rats, but loss in mature rats," *Experimental Gerontology*, vol. 72, pp. 204–217, 2015.

Vulintus - Mototrak. [Online]. Available: http://www.vulintus.com/mototrak/. [Accessed: 05-Oct-2018].

Thank You!