Abstract

Abstract Ophthalmology research often requires the viewing of photoreceptor cells in the back of the eye. In order to successfully image the subject's photoreceptors, the eye of the subject must be rotated about two axes. Traditional stages for microscopic viewing provide easy solutions for translational movement but lack the features necessary to rotate while keeping focus on the subject. Our client desires a device which can provide rotational movements around two axes and translational movements in all three dimensions. Different sized subjects will need to be viewed on the device without compromising its movements or accuracy. The final rotations focused on the pupil of the subject.

Background

Research and Biological Background
Glaucoma, macular degeneration, and other degenerative ocular diseases, can indicate risk for cardiovascular disease and diabetes
[1].
Before reaching the retina, light passes through four primary components: the cornea, the pupil, the lens, and the vitreous
body. Then the light passes through the 10 layers of the retina, body. Then the light passes through the 10 layers of the retina,
which includes a layer of photoreceptor cells (rods and cones). [2] Which includes a ayer of photoreceptor cells (rods and coness).[2]
Researchers use a TMC vibration isolation table (Figure 2) to keep subjects stationary.
Design Background and Motivation Goal of our design: Aid in imaging
of the eye in relation to the pupil.

- Sample rotation in relation to the successfully view and image all the photoreceptors of the eye

Competing design

Gyroscope

Gyroscope

- Double Axle eimbal mount, which independently rotates
about each axis about each axis Maintains a constant center of rotation
Modular motion stages utilizing interconnecting elements
- Device contains interlocking elements for modular device Modular motion stages utilizing interconnecting elements
- Device contians interlocking element for modular device
- First modular device allows for translational movements - Second modular device allows for rotational movements Third modular device permits multi-axis linear-rotational
movements - This device gives

$$
\begin{gathered}
\text { interest to our client } \\
\text { Keyence Digital Microscope }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Interest to our client } \\
& \frac{\text { Kevence Digititl Mircoscope }}{\text { - Digital microscope that can capture pictures in real time with 2D }} \text { D }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Digital microscoop } \\
& \text { measurements. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { measurements. } \text { Allows for hight }
\end{aligned}
$$

Problem and Aims

Problem:

Current microscope stages cannot rotate and translate about the subjects' pupils in an accurate
Project Goal:

Design and manufacture a new microscope stage that can rotate and translate different rodent subject's pupils to aid in the viewing and image capture of photoreceptors.

Design Specifications

No larger than $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 50 \mathrm{~cm}$

Support 3.0 kg load Sterilizable with alcohol wipes Operate between -10° and $50^{\circ}{ }^{\circ}$ Non-absorbable for water Under $\$ 250$

Discussion of Results

$$
\begin{aligned}
& \text { Figure 13. Mechanical } \\
& \text { diagram of knob Grey Pro has an Ultimate } \\
& \text { dif.o.s. }=\frac{61 \mathrm{MPa}}{20}=2 .
\end{aligned}
$$

igures 14-16 (right):
These box and whisker graphs shows statistical ata for the minimum rotational and translational
movements a user could make (minimum 10 trials).

Figure 17. Ease of z-axis translation Figure 18. Ease of y-axis rotation

ㅁㅡㅡㅡㅡㄹ

Figure 19. Ease of z-axis rotation

Future Work

Modifications to the Device
Choose a stronger material for the dial to improve the factor of safety

- Improve the spacing between parts for smoother connections

Modify specimen holder to accommodate a warming pad
Increase ball bearing size
Replace the needle bearing with a size 6200 ball bearing Improve the connection between the x-axis rotation gear and the knob shaft
Increase the stability of the center table by adding a Change the center of the circular table by adding a more durable bolt and nut modulation movement and durability along the threads

- Add an arm on to the specimen holder so the specimen doesn't fall out.

Acknowledgments

Dr. Jeremy Rogers, Department of Biomedical Engineering
Dr. Aaron Suminski, Department of Biomedical Engineering
Makerspace Staff, UW Makerspace

References

